

Filtering on Wires Cable Ferrites, Usage & Comparison

Alex Snijder
Field Application Engineer
Wurth Elektronik Nederland B.V.

Agenda

- <u>E</u>lectro<u>m</u>agnetic <u>C</u>ompatibility (EMC)
- Application of Cable Ferrites
- Impedance of a Ferrite
- Different Core materials
- Behaviour of a ferrite

CE + CE ≠ CE

Standard: IEC 61000-1-1 (International Standard)

Definition:

 Ability of electronic devices and systems to operate correct without influencing other devices or being disturbed by surrounding noises

Conclusion:

All devices have to follow the defined limits of EMC

- EN61000-6-4 industry standard
- EN61000-6-3 consumer area

Application of Cable Ferrites

Usage for:

- Interference suppression
- Conductive and radiated emissions
- Common and differential mode noise

Benefits:

- Fast solution to ensure delivery
- No redesign of the printed circuit needed
- No influence to the data signal

Application Areas:

Computer, Industry, Consumer products, Telecommunication...

Conclusion:

Cable ferrites are used to eliminate EMI-Problems!

Kinds of Interferences

Origin of an Interference:

Change of Voltage and Current in the disturbing source

Conductive Interferences:

- Standard definition: Test at EMC Lab from 150kHz 30MHz
- For Differential Mode disturbances

Radiated Interferences:

- Standard definition: Test at EMC Lab from 30MHz 2GHz
- For Common Mode disturbances

Conclusion:

Depending on the frequency we have different kind of interferences

Impedance of a Ferrite

General Information

- Impedance is also called AC resistance and is a complex function over frequency
- The Modulus of complex impedance is $Z = \sqrt{R^2 + X^2}$
 - It is the complex addition of resistance and reactance

Dependent Factors

Resistance

- Ferrite Core
- Cable
- Measuring Instrument

Reactance

- Inductive Losses
- Capacitive Losses

Equivalent Circuit of a cable ferrite

Impedance Curve

- Resistance
 - Absorbes disturbance energie
- Inductive Reactance
 - Stores energy (for a short time)
- Capacitance
 - AC passes, DC is blocked

- SRF
 - XL=XC

Cable Ferrite functioning

A Cable Ferrite is comparable to a common mode choke with bifilar winding

- Both are absorbing common mode interferences
- For detecting differential mode interferences you can put the cable ferrite over one wire

Trilo: Il Components Page 186

Solid Cores

- Planned EMI Suppression
- Smaller Dimensions
- Cost effective

WE-TOF

Snap Ferrites (STAR-Series)

- Subsequent EMI Suppression
- Key Technology
 - Patented
 - Inner security lock
 - No unauthorized removing
- Fixation of the cable
- Cable Clamping Protection

Different Core materials

Step 1: Check the frequency range

Behaviour of a ferrite (NiZn (74271733) and MnZn (74272733))

- 1 Ferrite on Cable
- 2 Ferrites in row
- 2 turns on 1 Ferrite

NiZn Ferrite 74271733 – 1 Ferrite

NiZn Ferrite 74271733 – 2 Ferrites in a row

NiZn Ferrite 74271733 – 2 turns on 1 Ferrite

Measurement of NiZn Ferrite – overview

MnZn Ferrite 74272733 – 1 Ferrite

MnZn Ferrite 74272733 – 2 Ferrites in row

MnZn Ferrite 74272733 – 1 Ferrite 2 turns

MnZn Ferrite 74272733 – Comparison

Summarize

- CE certified equipment combined can't be considered as an new CE certified machine
- Ferrites can solve issues in both lower frequencies (MnZn) and high frequencies (NiZn)
- Ferrites will also increase immunity of the application
- Adding more turns and/or ferrites on a cable has a complex result

Trilogy of Magnetics

- Now published as 4th edition
- •Three sections:

Magnetic basics

Components

Application notes
Filtering
DC/DC PSU design

Toolbox for engineers & purchasers

Software

- > Magnetic Builder
- > WEBENCH® Designer
- > Component Selector
- > LTspice Simulator

Search Tools

- > Application Guide
- > Product Finder One Click Selection Guide
- > RF Product Finder
- > Product Matrix
- > Product & Application Overview Passive Components
- > Product & Application Overview Electromechanical Components
- > Crossreference
- > IC Reference Designs
- > Search Engine for Passive Components
- > Search Engine for Electromechanical Components

Libraries

- > Eagle library for Passive & Electromechnanical Components
- > Altium Designer
- > S-Parameter
- > 3D Files for Passive Components (.igs .stp .wrl)
- > 3D Files for Connectors & Switches (.igs .stp .wrl)
- > LTspice library of WE components

e-learning

- > Product Training
- > Application Notes

Lab rack & Design kits

Globally available. Locally present.

Würth Elektronik is present with production plants and a worldwide technical sales force in all important markets of the world.

THANK YOU

Any Questions?