
BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

1

High-Level
Synthesis for FPGA

Designs

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

Cereslaan 10b
5384 VT Heesch

 +31 (0)412 660088
 info@core-vision.nl

www.core-vision.nl

Frank de Bont
Trainer consultant

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

2

 Need for High-Level Synthesis
 High-Level Synthesis
 System Integration
 Design Exploration
 High-Level Synthesis Flow
 Control & Datapath Extraction
 Scheduling and Binding
 Example FIR C-code
 Who is Core|Vision

Agenda
�

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

3

 Larger designs pose challenges in design and verification of hardware

 Industry trend is moving towards hardware
acceleration to enhance performance and productivity
 CPU-intensive tasks are now offloaded to hardware accelerator

Hardware accelerators require a lot of time to understand and design

 Vivado HLS tool converts algorithmic description written in
C-based design flow into hardware description (RTL)
 Elevates the abstraction level from RTL to algorithms

 High-level synthesis is essential for maintaining design
productivity for large designs

1
-

4

54255**slide

 Algorithmic-based approaches are popular due to
accelerated design time and time-to-market pressures

Need for High-Level Synthesis

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

4

High-Level Synthesis: HLS

 Creates an RTL
implementation from source
code

 C, C++, SystemC
 Coding style impacts hardware

realization
 Limitations on certain constructs

and access to libraries

 Extracts control and dataflow from the source code
 Implements the design based on defaults and user-applied directives

 Many implementations are possible from the same source
description
 Smaller designs, faster designs, optimal designs

 Enables design exploration

 High-level synthesis

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

5

1
- 6

80692**slide

System Integration

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

6

1
- 7

54257**slide

Design Exploration

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

7

High-Level Synthesis flow

 Hardware extraction from C code

 Control and datapath can be extracted from C code at
the top level

 Same principles used in the example can be applied to
sub-functions
 At some point in the top-level control flow, control is passed to

a sub-function
 Sub-function can be implemented to execute concurrently with

the top level and or other sub-functions

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

8

 Scheduling and binding processes create hardware design
from control flow graph considering the constraints and
directives
 Scheduling process maps the operations into cycles

 Binding process determines which hardware resource, or
core, is used for each operation

 Binding decisions are considered during scheduling because
the decisions in the binding process can influence the
scheduling of operations

 For example, using a pipelined multiplier instead of a
standard combinational multiplier

High-Level Synthesis Flow cont

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

9

HLS: Control Extraction

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

10

1
- 1

0

54260**slide

Control and Datapath Extraction

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

11

 Heart of HLS

 Scheduling determines in which clock cycle an operation
will occur
 Takes into account the control, dataflow, and user directives

Allocation of resources can be constrained (discussed in detail later)

 Binding determines which library cell is used for each
operation
 Takes into account component delays and user directives

 Scheduling and binding

Scheduling and Binding

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

12

ide

 Operations in the control flow graph are mapped into clock
cycles

 Technology and user constraints impact the schedule
 Faster technology (or slower clock) can allow more operations to

occur in the same clock cycle

 Code also impacts the schedule
 Code implications and data dependencies must be obeyed

Scheduling

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

13

 Binding must use two multipliers
because both are in the same cycle

 It can decide to use an adder and
subtractor or one addsub

 Binding is where operations
are mapped to hardware
 Operators extracted from

the C code are mapped to
RTL cores

 Binding decision: to share
 Given the following schedule

 Binding decision: or not to
share
 Given the following schedule

 Binding may decide to
share the multipliers (each
is used in a different cycle)

 Or it may decide the cost of
sharing (MUXing) would
impact timing and it may
decide not to share them

 It may make this same
decision in the first example
above as well

Binding

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

14

Example FIR C-Code

 By default, loops are
rolled

 Loops can be
unrolled if their
indices are statically
determinable at
elaboration time

 Each C loop iteration
implemented in the
same state

 Each C loop iteration
implemented with
same resources

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

15

 Read on port X can occur anywhere
from the start to iteration 4
 Only constraint on RDx is that it

occur before the final multiplication
 There are no advantages to reading

any earlier (unless you want it
registered)

 However, the final multiplication is
very constrained…

Example FIR C-Code cont

void fir (
...
acc = 0;

loop: for (i=3; i>= 0; i--){
if (i==0){

acc +=x*c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];

}
}

*y = acc;
}

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

16

 Schedule after loop optimization
 With the loop unrolled (partial / full)

 Dependeny on loop iterations is gone
 Operations can occur in parallel
 Design finished faster but more

operators
 Two multipliers and two adders

Example FIR C-Code cont

void fir (
...
acc = 0;
loop: for (i=3; i>= 0; i--){
if (i==0){
acc +=x*c[0];
shift_reg[0] = x;
} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];
}

}
*y = acc;
}

 Schedule after array optimization
 With the existing code and defaults

 Port C is by default dual port RAM
 Allows two reads per clock cycle
 Max number of simultaneous

reads and writes

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

17

 With the C port partitioned into (4) separate ports
 All reads and multiply can occur in one cycle

Example FIR C-Code cont

void fir (
...
acc = 0;

loop: for (i=3; i>= 0; i--){
if (i==0){

acc +=x*c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];

}
}

*y = acc;
}

 If the timing allows
 The additions can also

occur in the same cycle
 The write can be

performed in the same
cycles

 Optionally the port reads
and writes could be
registered

 This solution uses much
more hardware resources in
only one clock cycle

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

18

Core|Vision

Our competences
Core|Vision has more than 100 man years of design experience in hard-
and software development. Our competence areas are:

 System Design
 FPGA Design
 Consultancy / Training
 Digital Signal Processing
 Embedded Real-time Software
 App development, IOS Android
 Data Acquisition, digital and analog
 Modeling & Simulation
 ASIC Conversion & Prototyping
 PCB design & Layout
 Doulos & Xilinx Training Partner

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

19

?
Cereslaan 10b

5384 VT Heesch
 +31 (0)412 660088

www.core-vision.nl

Email : info@core-vision.nl

??

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

20

 Essentials of FPGA Design 1 day
 Designing for Performance 2 days
 Advanced FPGA Implementation 2 days
 Design Techniques for Lower Cost 1 day
 Designing with Spartan-6 and Virtex-6 Family 3 days
 Essential Design with the PlanAhead Analysis Tool 1 day
 Advanced Design with the PlanAhead Analysis Tool 2 days
 Xilinx Partial Reconfiguration Tools and Techniques 2 days
 Designing with the 7 Series Families 2 days

Training Program

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

21

Training Program

 Vivado Essentials of FPGA Design 2 days
 Vivado Design Suite Tool Flow 1 day
 Vivado Design Suite for ISE Users 1 day
 Vivado Avanced XDC and STA for ISE Users 2 days
 Vivado Advanced Tools & Techniques 2 days
 Vivado Static Timing Analysis and XDC 2 days
 Debugging Techniques Using Vivado Logic Analyzer 1 day
 Essential Tcl Scripting for Vivado Design Suite 1 day
 Vivado FPGA Design Methodology 1 day

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

22

 Designing with Multi Gigabit Serial IO 3 days
 High Level Synthesis with Vivado 2 days
 C-Based HLS Coding for Hardware Designers 1 day
 C-Based HLS Coding for Software Designers 1 day
 DSP Design Using System Generator 2 days
 Essential DSP Implementation Techniques for

Xilinx FPGAs 2 days

Training Program

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

23

 Embedded Systems Development 2 days
 Embedded Systems Software Development 2 days
 Advanced Features and Techniques of SDK 2 days
 Advanced Features and Techniques of EDK 2 days
 Zynq All Programmable SoC Systems Archicture 2 days
 C Language Programming with SDK 2 days

Training Program

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

24

 VHDL Design for FPGA 3 days
 Advanced VDHL 2 days
 Comprehensive VHDL 5 days
 Exprt VHDL Verification 3 days
 Expert VDHL Design 2 days
 Expert VHDL 5 days
 Essential Digital Design Techniques 2 days

Training Program

