
BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

1

High-Level 
Synthesis for FPGA 

Designs

BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

Cereslaan 10b
5384 VT Heesch

 +31 (0)412 660088
 info@core-vision.nl

www.core-vision.nl

Frank de Bont
Trainer consultant



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

2

 Need for High-Level Synthesis
 High-Level Synthesis
 System Integration
 Design Exploration
 High-Level Synthesis Flow
 Control & Datapath Extraction
 Scheduling and Binding
 Example FIR C-code
 Who is Core|Vision

Agenda
�



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

3

 Larger designs pose challenges in design and verification of hardware

 Industry trend is moving towards hardware 
acceleration to enhance performance and productivity
 CPU-intensive tasks are now offloaded to hardware accelerator 

Hardware accelerators require a lot of time to understand and design

 Vivado HLS tool converts algorithmic description written in 
C-based design flow into hardware description (RTL)
 Elevates the abstraction level from RTL to algorithms

 High-level synthesis is essential for maintaining design 
productivity for large designs

1
-

4

54255**slide

 Algorithmic-based approaches are popular due to
accelerated design time and time-to-market pressures

Need for High-Level Synthesis



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

4

High-Level Synthesis: HLS

 Creates an RTL 
implementation from source 
code

 C, C++, SystemC
 Coding style impacts hardware 

realization
 Limitations on certain constructs

and access to libraries

 Extracts control and dataflow from the source code
 Implements the design based on defaults and user-applied directives

 Many implementations are possible from the same source 
description
 Smaller designs, faster designs, optimal designs

 Enables design exploration

 High-level synthesis



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

5

1
- 6

80692**slide

System Integration



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

6

1
- 7

54257**slide

Design Exploration



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

7

High-Level Synthesis flow

 Hardware extraction from C code

 Control and datapath can be extracted from C code at
the top level 

 Same principles used in the example can be applied to 
sub-functions
 At some point in the top-level control flow, control is passed to

a sub-function
 Sub-function can be implemented to execute concurrently with

the top level and or other sub-functions



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

8

 Scheduling and binding processes create hardware design
from control flow graph considering the constraints and 
directives
 Scheduling process maps the operations into cycles

 Binding process determines which hardware resource, or 
core, is used for each operation

 Binding decisions are considered during scheduling because 
the decisions in the binding process can influence the
scheduling of operations

 For example, using a pipelined multiplier instead of a
standard combinational multiplier

High-Level Synthesis Flow cont



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

9

HLS: Control Extraction



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

10

1
- 1

0

54260**slide

Control and Datapath Extraction



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

11

 Heart of HLS

 Scheduling determines in which clock cycle an operation
will occur
 Takes into account the control, dataflow, and user directives 

Allocation of resources can be constrained (discussed in detail later)

 Binding determines which library cell is used for each 
operation
 Takes into account component delays and user directives

 Scheduling and binding

Scheduling and Binding



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

12

ide

 Operations in the control flow graph are mapped into clock 
cycles

 Technology and user constraints impact the schedule
 Faster technology (or slower clock) can allow more operations to 

occur in the same clock cycle

 Code also impacts the schedule
 Code implications and data dependencies must be obeyed

Scheduling



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

13

 Binding must use two multipliers 
because both are in the same cycle

 It can decide to use an adder and
subtractor or one addsub

 Binding is where operations 
are mapped to hardware
 Operators extracted from 

the C code are mapped to 
RTL cores

 Binding decision: to share
 Given the following schedule

 Binding decision: or not to 
share
 Given the following schedule

 Binding may decide to
share the multipliers (each
is used in a different cycle)

 Or it may decide the cost of 
sharing (MUXing) would
impact timing and it may 
decide not to share them

 It may make this same
decision in the first example
above as well

Binding



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

14

Example FIR C-Code

 By default, loops are 
rolled

 Loops can be 
unrolled if their
indices are statically
determinable at 
elaboration time

 Each C loop iteration
implemented in the
same state 

 Each C loop iteration
implemented with 
same resources



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

15

 Read on port X can occur anywhere 
from the start to iteration 4
 Only constraint on RDx is that it 

occur before the final multiplication
 There are no advantages to reading

any earlier (unless you want it
registered)

 However, the final multiplication is 
very constrained…

Example FIR C-Code cont

void fir (
...
acc = 0;

loop: for ( i=3; i>= 0; i--){
if (i==0){

acc +=x*c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];

}
}

*y = acc;
}



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

16

 Schedule after loop optimization
 With the loop unrolled (partial / full)

 Dependeny on loop iterations is gone
 Operations can occur in parallel
 Design finished faster but more 

operators
 Two multipliers and two adders

Example FIR C-Code cont

void fir (
...
acc = 0;
loop: for ( i=3; i>= 0; i--){
if (i==0){
acc +=x*c[0];
shift_reg[0] = x;
} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];
}

}
*y = acc;
}

 Schedule after array optimization
 With the existing code and defaults

 Port C is by default dual port RAM
 Allows two reads per clock cycle
 Max number of simultaneous 

reads and writes



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

17

 With the C port partitioned into (4) separate ports
 All reads and multiply can occur in one cycle

Example FIR C-Code cont

void fir (
...
acc = 0;

loop: for ( i=3; i>= 0; i--){
if (i==0){

acc +=x*c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i]*c[i];

}
}

*y = acc;
}

 If the timing allows
 The additions can also

occur in the same cycle
 The write can be

performed in the same 
cycles

 Optionally the port reads
and writes could be
registered

 This solution uses much 
more hardware resources in 
only one clock cycle



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

18

Core|Vision

Our competences
Core|Vision has more than 100 man years of design experience in hard-
and software development. Our competence areas are:

 System Design
 FPGA Design
 Consultancy / Training
 Digital Signal Processing
 Embedded Real-time Software
 App development, IOS Android
 Data Acquisition, digital and analog
 Modeling & Simulation
 ASIC Conversion & Prototyping
 PCB design & Layout
 Doulos & Xilinx Training Partner



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

19

?
Cereslaan 10b

5384 VT Heesch
 +31 (0)412 660088

www.core-vision.nl

Email : info@core-vision.nl

??



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

20

 Essentials of FPGA Design 1 day
 Designing for Performance 2 days
 Advanced FPGA Implementation 2 days
 Design Techniques for Lower Cost 1 day
 Designing with Spartan-6 and  Virtex-6 Family 3 days
 Essential Design with the PlanAhead Analysis Tool 1 day
 Advanced Design with the PlanAhead Analysis Tool 2 days
 Xilinx Partial Reconfiguration Tools and Techniques 2 days
 Designing with the 7 Series Families 2 days

Training Program



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

21

Training Program

 Vivado Essentials of FPGA Design 2 days
 Vivado Design Suite Tool Flow 1 day
 Vivado Design Suite for ISE Users 1 day
 Vivado Avanced XDC and STA for ISE Users 2 days
 Vivado Advanced Tools & Techniques 2 days
 Vivado Static Timing Analysis and XDC 2 days
 Debugging Techniques Using Vivado Logic Analyzer 1 day
 Essential Tcl Scripting for Vivado Design Suite 1 day
 Vivado FPGA Design Methodology 1 day



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

22

 Designing with Multi Gigabit Serial IO 3 days
 High Level Synthesis with Vivado 2 days
 C-Based HLS Coding for Hardware  Designers 1 day
 C-Based HLS Coding for Software  Designers 1 day
 DSP Design Using System Generator 2 days
 Essential DSP Implementation Techniques for

Xilinx FPGAs 2 days

Training Program



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

23

 Embedded Systems Development 2 days
 Embedded Systems Software Development 2 days
 Advanced Features and Techniques of SDK 2 days
 Advanced Features and Techniques of EDK 2 days
 Zynq All Programmable SoC Systems Archicture 2 days
 C Language Programming with SDK 2 days

Training Program



BRINGING YOU THE NEXT LEVEL IN EMBEDDED DEVELOPMENT
_

24

 VHDL Design for FPGA 3 days
 Advanced VDHL 2 days
 Comprehensive VHDL 5 days
 Exprt VHDL Verification 3 days
 Expert VDHL Design 2 days
 Expert VHDL 5 days
 Essential Digital Design Techniques 2 days

Training Program


