Quadra Solutions Limited

People. Knowledge. Innovation.

Save Time & Money with an Integrated Design Flow

For many years it has been acceptable to use individual point tools to analyse and verify your high speed layouts and critical nets, but today's high performance FPGAs, DSPs and Micro-Processors require a more sophisticated approach

The CADSTAR High Speed Design Suite lets you adopt an integrated design flow to create, implement, analyse, verify and document all of your constraints in one seamless environment

Who cares about Integration?

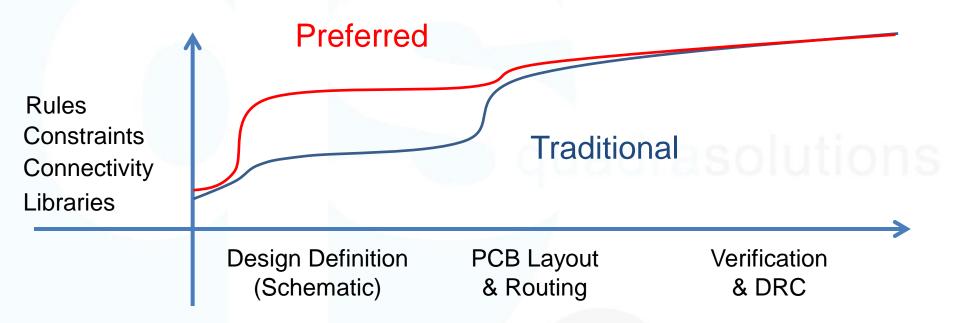
- > You and your colleagues
 - > Design, Layout, Production, Test
 - > Fast, Accurate, Secure, Repeatable
- > Your Partners
 - > Consultants, Fabrication, Assembly, Test
 - > Accurate, Timely, Complete
- > Management
 - > Internal, External (customers)
 - > On schedule, to Budget

Why is Integration important?

- > Integration:
 - Enables a single repository for all critical data in the design flow
 - Eliminates the need for data translation between tools
 - > Reduces risk and potential for error
 - > Saves time!

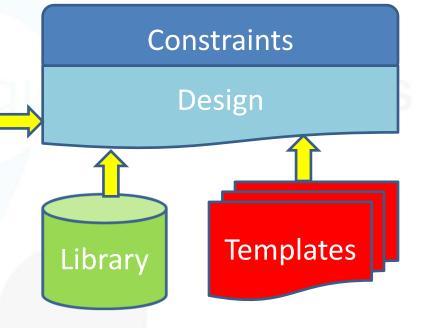
What data can you share?

- > Libraries
 - > Electrical (Symbol, Component, Part)
 - > Mechanical (3D)
 - > Simulation & Modelling (Spice, IBIS, etc.)
- > Electronic Design Data
 - > Schematic, PCB Layout, ReUse blocks, etc.
- > Rules & Constraints
 - > Manufacturing, Electrical



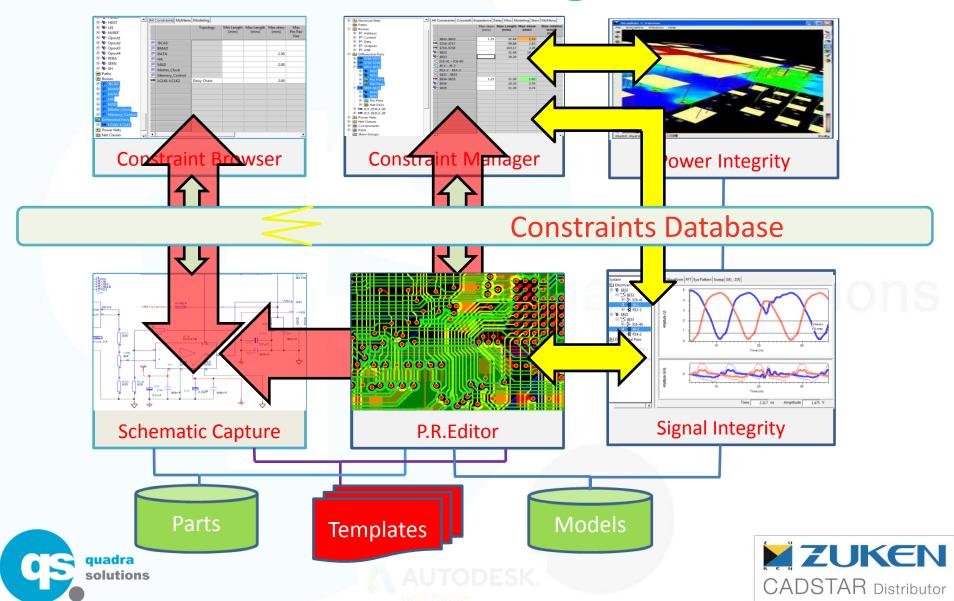
When is Data Required?

> Builds up during the design process



Where does the data reside?

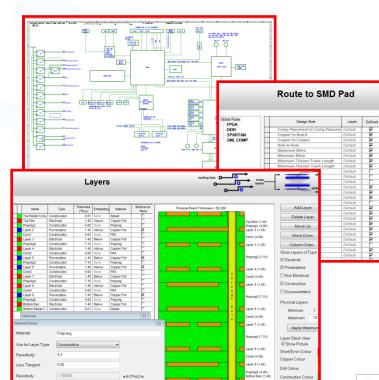
- > Libraries
 - > CAD Library or Database
 - > Company, User, Project
- > Rules
 - > Templates
 - > Company, User, Project
- > Design Data
 - > Project folder
 - > Variants
- > Constraints
 - > Constraints database
 - > Linked to the design document



How integration works in the CADSTAR design flow

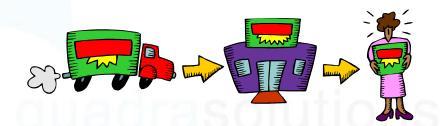
Libraries

- > CAD
 - > Electrical
 - > Design
 - > Selection
 - > Data-centric
 - > Information
 - > Lifecycle
 - > History
 - > Versioning
- > Models
 - > Simulation
 - > Packaging
 - > Pin types and characteristic
 - > 3D



Templates

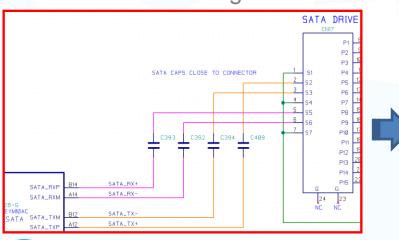
- > Library creation
 - > Symbols, Footprints, Documentation
 - > Standards (Corporate, National, External)
 - > Attributes
- > Schematic
 - > Structure
 - > Conventions
- > PCB
 - > Layer Stack
 - > Rules set
 - > Manufacturing

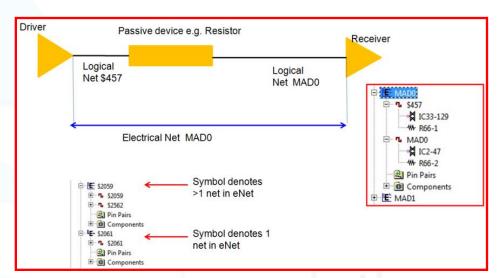


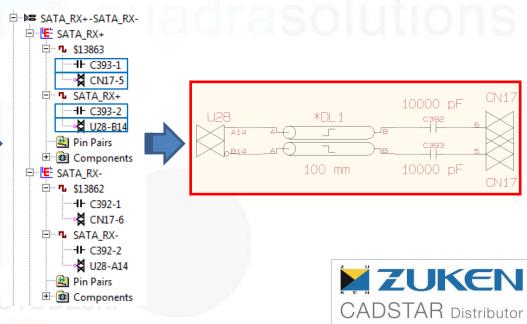
Save DRC File

Constraint Definition Process

- > Automation
 - > Net conversion from Logical to Electrical
 - > Classification
- > Organisation
 - > Organisation
 - > Structure
- > Constraint Entry
 - > Group
 - > Net
 - > Pin-Pair

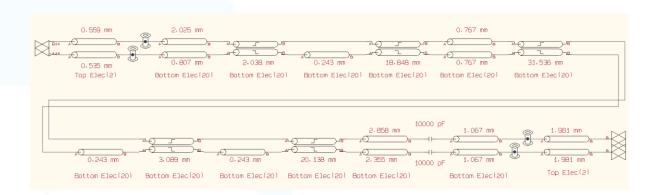


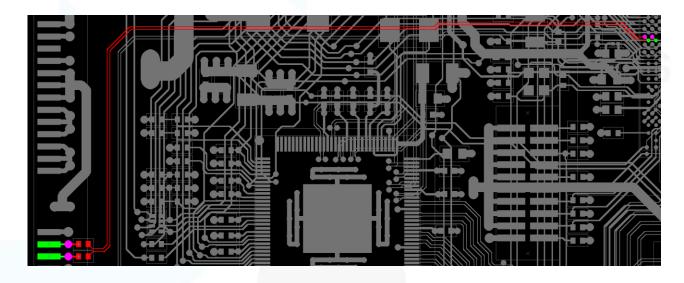

Automation - eNet Conversion


- Concatenation of nets to include
 - > terminators
 - > Serial or Differential
 - > exclude power connections
 - > Pull up/down
 - > filtering

quadra

solutions




eNet Physical Results - Example

> Results

> Topology

> Routing

High Speed Design - Engineering Process

- Identify critical nets
 - > Busses, Diff Pair, Clocks....
- Establish constraint values
 - Datasheet, Calculation, Signal Integrity Verification, other
- > Implement net constraints
 - > Length, Delay, Skew, Topology
- > Build constraint groups
 - > Busses, Groups, Nets, Pins

- > Action Place & Route
 - > To physical design rules
 - > To Constraints
- Extend Analysis and Verification
 - > Measure, analyse and simulate
 - > HighSpeed Router
 - > Signal Integrity
 - > Power Integrity
 - > 3D
- Document Results
 - Verify conformance of the design to initial objectives
 - > Statistics
 - Reports

Constraints - Classification

- > Automatic extraction
 - > Power Nets
 - > Component Types & Values
 - > Busses
 - > Differential Pairs

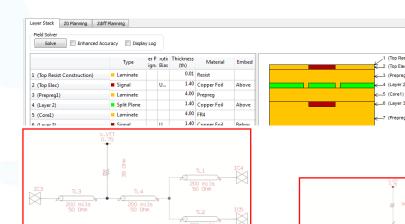
Electrical Nets					(thou)
Paths)XE	DMI2_+TRX3-DMI2TRX3	All	Daisy Chain	
Busses)#2	DMI2_+TRX4-DMI2TRX4	All	Daisy Chain	
Differential Pairs Differential Pairs Down Nets)XE	DRAM00CLK0:DRAM00K0_B	All	H-Tree	1
Net Classes)#2	DRAM00CLK1:DRAM00K1_B	All	H-Tree	1
⊕ ® Components)E	DRAM3_SDQS0_B-DRAM3_SDQS0	All	Daisy Chain	20
⊕ ® Parts)E	DRAM3_SDQS1-DRAM3_SDQS1_B	All	Daisy Chain	20
E Skew Groups)E	DRAM3_SDQS2-DRAM3_SDQS2_B	All	Daisy Chain	20
Topologies)E	DRAM3_SDQS3_B-DRAM3_SDQS3	All	Daisy Chain	20
A reference)E	DRAM3_SDQS4_B-DRAM3_SDQS4	All	Daisy Chain	20
	N=	DRAM3_SDQS5_B-DRAM3_SDQS5	All	Daisy Chain	20
`~_~`)E	DRAM3_SDQS6_B-DRAM3_SDQS6	All	Daisy Chain	20
)E	DRAM3_SDQS7-DRAM3_SDQS7_B	All	Daisy Chain	20
	NE	HDMI TV CLVN HDMI TV CLVD	ΛII	Daisse Chain	

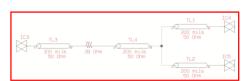
Constraints - Organisation

- > Create structure in the design with:
 - > Net Class
 - > Bus
 - > Sub-Bus
 - > Diff Pair
 - > Pin Pair
 - > Path

⊕ LE- TXEN
⊞ IE- TXERR
Paths
D Busses
🕩 📁 Address Bus A[0-24]
⊕- ► Control
🖃 ⊨ Data_Bus_D[0-31]
🖶 🎏 SubBus1
. F SubBus2
. F SubBus3
⊞ E SubBus4
⊕- F Outputs
🖃 🖻 Differential Pairs
⊞ DA1_In-DB1_In
⊞ DA2_In-DB2_In
⊞ BE Ethernet_TX+-Ethernet_TX-
🗈 💼 Power Nets

				()	(,	Vias	(01111)	(01111)
):E	D2+-D2-	All	Daisy Chain				63	77
E	D1+-D1-	All	Daisy Chain				63	77
æ	DA1_In-DB1_In	All	Daisy Chain				63	77
E	DA2_In-DB2_In	All	Daisy Chain				63	77
×	Ethernet_RX+-Ethernet_RX-	All	Daisy Chain				63	77
E	Ethernet_TX+-Ethernet_TX-	All	Daisy Chain				63	77
F	Address Bus A[0-24]	All					63	77
	Control	All					63	77
F	Data_Bus_D[0-31]	All					63	77
F	Outputs	All					63	77
F	USB	All					63	77
F	SubBus1	All					63	7
F	SubBus2	All					63	7
F	SubBus3	All					63	77
F	SubBus4	All					63	77

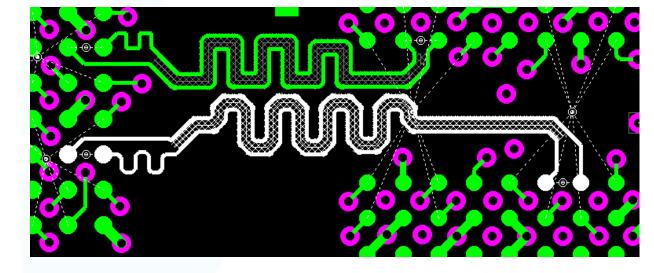




Constraint – Assigning Values

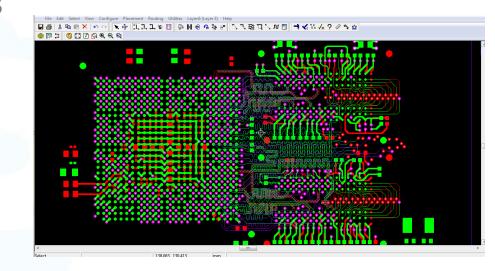
- > Topology
- > Impedance Profile
- > Skew Groups
 - > Simple
 - > Relative
- > Intra-Net Skew
 - > Virtual Branch Point
- > Length v. Delay Mode

	Туре	wiath (th)	(Ohm)	velocity (th/ps)		Туре	(th)	(th)	(Ohm)	(Ohm)	(Ohm)
All		4.00			All		4.00	4.00			
2 (Top Elec)	Signal		58.69	6.38	2 (Top Elec)	Signal			89.11	44.55	71.12
4 (Layer 2)	Split Plane		98.85	6.12	4 (Layer 2)	Split			90.06	45.03	148.50
6 (Layer 3)	Signal		49.38	5.69	6 (Layer 3)	Signal			76.56	38.28	59.09
8 (Layer 4)	Signal		49.38	5.69	8 (Layer 4)	Signal			76.56	38.28	59.09
10 (Layer 5)	Split Plane		62.80	5.69	10 (Layer 5)	Split			83.83	41.91	81.39
12 (Layer 6)	Split Plane		62.80	5.69	12 (Layer 6)	Split			83.83	41.92	81.39
14 (Layer 7)	Signal		49.38	5.69	14 (Layer 7)	Signal			76.56	38.28	59.09
16 (Layer 8)	Signal		49.38	5.69	16 (Layer 8)	Signal			76.56	38.28	59.09
18 (Layer 9)	Split Plane		98.85	6.12	18 (Layer 9)	Split			90.06	45.03	148.50
20 (Bottom Elec)	Signal		58.69	6.38	20 (Bottom Elec)	Signal			89.11	44.55	71.12



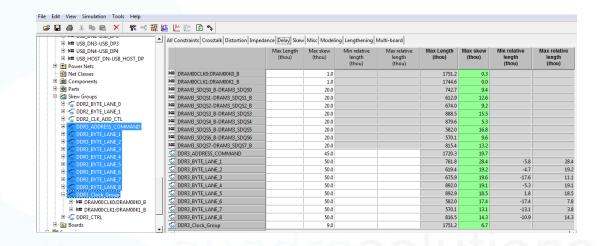
Constraint Implementation

- > Place and Route
 - > Dynamic DRC
 - > Clearance
 - > Length
 - > Delay



Constraint Verification

- > Dynamic
 - > Length / Delay markers
 - > Pop-up
- > Signal Integrity
- > Power Integrity
 - > EMC
 - > Power distribution
 - > Decoupling



Constraint Documentation

- > Spreadsheet
- > Reports
 - > DRC
 - > Skew
 - > Length
 - > Delay
- > Embed links in Schematic and PCB

Benefits of Integration - summary

- > For you and your colleagues
 - > Design, Layout, Production, Test
 - > Fast, Accurate, Secure, Repeatable
- > For your partners
 - > Consultants, Fabrication, Assembly, Test
 - > Accurate, Timely, Complete
- > For your management
 - > Internal, External (customers)
 - > On schedule, to Budget

Quadra Solutions Limited

People. Knowledge. Innovation.

