

Microchip IoT Solutions Considerations for Embedded Internet of Things Designs

Ian Pearson **Applications Engineer** Microchip Technology Inc.

IoT - The Internet of Things

Total installed base of Connected Devices

- Computers, Tablets, Smartphones, Embedded Devices etc.
- Expected to be >200billion by 2020*

Of this

~30billion are connected things*

But what is a thing....

- Autonomous sensors, actuators, systems, devices
- M2M Communications
- Collecting data
- Responding to conditions

In short, an embedded system...

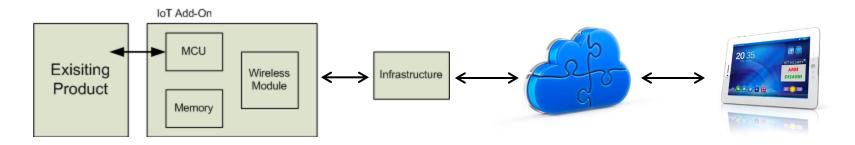
 ...with significant consideration for the effects and implications of connectivity and security

IoT - The Internet of Things

From an embedded engineers perspective

- It takes what we have provided for many years as stand alone systems, and adds connectivity, security and infrastructure
- Connectivity is migrating to wireless
- Infrastructure is moving to Cloud based systems
 - > leveraging smart devices and internet infrastructure
- HMI is moving to smart devices
- This changes how users interact with systems
- Affects business models for installation, support, servicing etc.

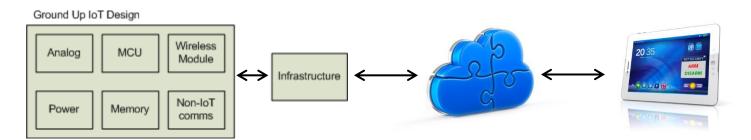
What does the IoT do for us?


- Commission using Smart Devices
- Remote Access and Control
- Profile and Status monitoring
- Remote Diagnosis
- Field Updates
- Data Collection
- Alerts, Warnings and Updates

Getting IoT Ready Bolt-On OR New Design

Add IoT capability to known good product

- Product has existing comms interface, protocol and command set
- No new commands or functions needed
- Simple upgrade to make device IoT capable
- May not benefit from all features e.g. Updates
- Intention is
 - Minimal changes to current design
 - Short design cycle



Getting IoT Ready Bolt-On OR New Design

Ground Up Design of Product to IoT enable

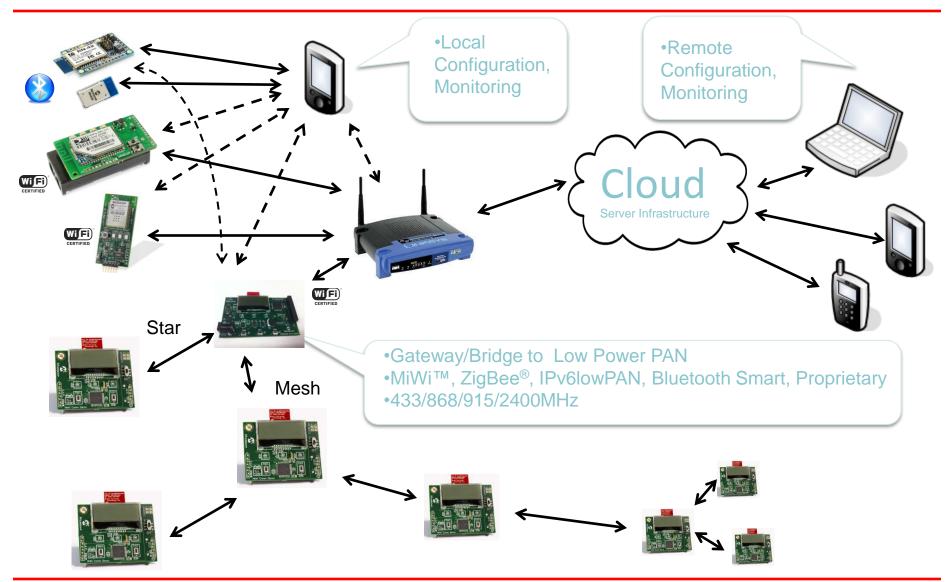
- Benefit from recent technology
- Full ground up functionality for IoT
- Longer design cycle –v- improved cost
- Design in security and robustness features
 - Class B system integrity checks
- Robust bootloaders
 - Multiple Images stored in serial flash
 - Dual Panel, Live Update capability on MCU
- Comms designs become software biased
 - Hardware design is crucial but largely a 'normal' embedded design
 - Needs greater memory resource to handle increased software complexity
 - IoT functionality leverages security and comms in software

Getting IoT Ready Security Considerations

Security is a Primary Design Consideration

- You are connecting a device to the internet...
- Assume you are a target is a good starting point
- Use standards based cryptography
 - AES-128 or better, SSL/TLS
 - Strong Key management
- Leverage infrastructure security
 - WPA2, Secure Simple Pairing etc.
- Write robust application code
 - Test for common issues, Unit testing etc.
 - Buffer Overflows, Bounds checking values, error handling

Getting IoT Ready Functional Considerations



Robustness is a Primary Design Consideration

- You're device is remote and engineer visits are expensive
- Need ability to autonomously recover from faults
 - · Creating a brick should be avoided
- Reliable, Secure bootloader employed
- Consider local bulk storage for bootload images
 - Add >2x Maximum MCU flash size as NV Storage
 - Provides space for multiple images of MCU flash
 - Can keep Last Known Good, Next New, Recovery etc. images
 - Consider 'Recovery Image'
 - Minimum functionality to connect to a secure recovery server in case of corruption or disaster recovery
 - Separate Bootload from Secure Download
 - Images held locally
 - · Can be integrity checked with server
 - Could be stored locally in encrypted format (additional memory!!)
- Test, Test and Test again...
 - 'Normal' embedded design testing needs to be supplemented with Comms and Security testing

Embedded Wireless System Options

So what is the Cloud?

- What Does it do for me?
- How does it affect me?

So what is the Cloud?

In simplistic terms it is client server computing

- Historically the server would be owned by and reside within the owners property
- Cloud computing moves the server side services to an off-site location and moves to greater reliance on comms. infrastructure
 - Generally servers are real or virtual and within a large non-descript location
 - Lots of physical security measures
 - Usually use latest fault tolerant and redundancy technology

But how does that benefit me and my company?

- Low cost of ownership
 - No capital outlay and cost write down on the books
- Scalable
 - Need more resources, simply add more
 - No need to plan ahead for capital requisition, raise PO, wait for product to arrive, install maintain and pay off capital
- Redundancy
 - Data and services can be replicated in multiple locations

So what is the Cloud?

And how does it affect me?

- Moves a historically embedded, hardware oriented design into the murky worlds of IT, Comms, App and Web development
- Security becomes a primary embedded design consideration
- Need to interface with IT and Software professionals
- Marketing input and decisions on usability, Look and Feel, branding etc.

Business Concerns Wireless Costs

To add wireless:

- RF Design expertise
 - Not Digital, Not Analog, It's RF!

- Expensive RF Lab equipment
 - Spectrum Analyzers, Signal Generators, Faraday Cage
- Increased Manufacturing Complexity
 - RF Calibration and Test Equipment
- Agency Regulations
 - FCC, ETSI, IC, KCC, Telec
- Standards Body Compliance
 - BT SiG, Wi-Fi.org, Zigbee.org

- Time to Market
 - Additional expertise, equipment and regulatory factors MAY increase time to market

Microchip's GOAL: Make it Easy!

Microchip loT Solution Building Blocks

Embedded Products

- Microcontrollers
- Memory
- Analog

Firmware and Software Stacks

- TCP/IP
- Bluetooth
- Wi-Fi

- MiWi™ (Lightweight Communications)
- WiFly (Serial Interface)
- SSL/TLS Security
- AES 128/256

Wireless and Ethernet

- •Wi-Fi® Modules
- •Bluetooth® Modules
- Ethernet Solutions
- •CDMA/GSM

Cloud Solutions/Partners

- Microchip Cloud Image
- Third Party Cloud Providers

MPLAB® Harmony Architecture

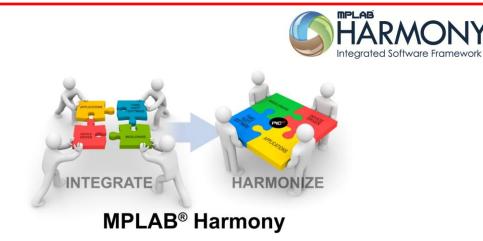
Application Layer

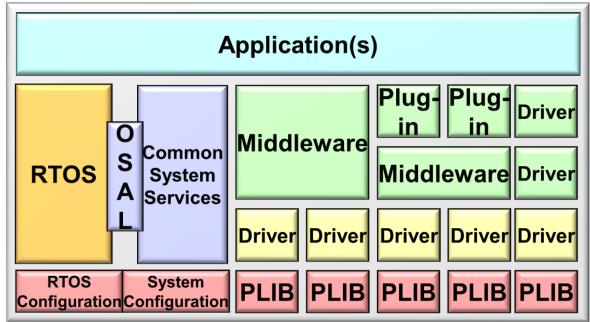
- Implements the overall desired behavior
- No direct HW access enables easy porting across Microchip parts

Common System Services

- Manages shared resource modules to avoid conflicts.
- Provides common functionality to avoid duplication

Middleware


- Implements complex libraries & protocols (USB, TCP/IP, Graphics etc)
- Provides highly abstracted application program interface


Device Drivers

- Provides simple & abstracted interface to peripheral
- Manages peripheral access control to avoid conflicts

Peripheral Libraries (PLIB)

- Access library that provides low level direct access to a peripheral
- Provides common functional interface for MCHP cross micro compatibility

Embedded IoT SecurityWolfSSL and CyaSSL

WolfSSL

 Provide SSL/TLS solutions targeted at small memory footprint embedded systems

CyaSSL

- Is the 3rd party SSL library developed by wolfSSL
- Integrates easily into MPLAB Harmony
- Features
 - Supports upto TLS 1.2, DTLS 1.2
 - Supports variety of Ciphers and PKI capabilities
 - Small footprint 20 -100kB Flash, 1-36kB RAM
 - 20x smaller than OpenSSL
 - Clear Licence GPLv2/Commercial

The Cloud "Stack"

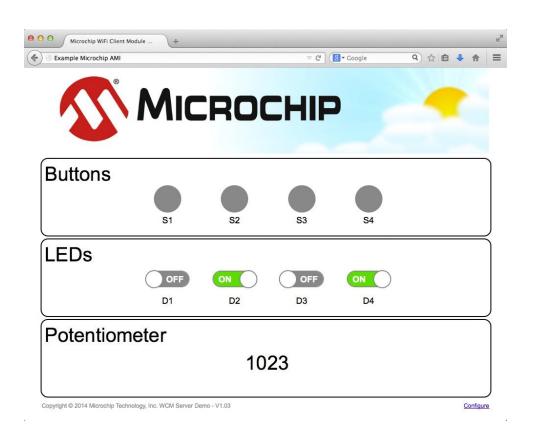
Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (Most Flexible and Scalable)
(IaaS)

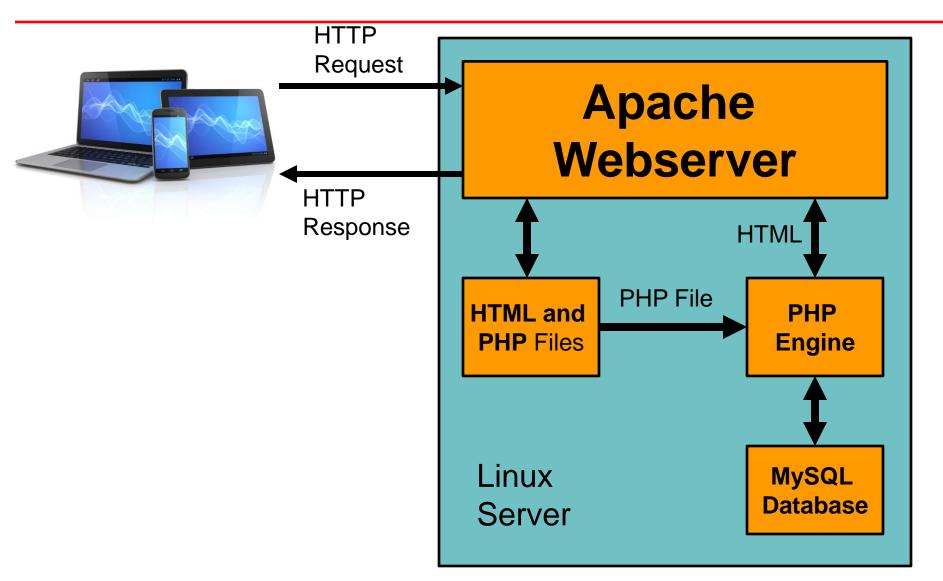
You Want the Best of Both Worlds

- Ease of development of SaaS without the cost or Lock-In
- Availability and Scalability of laaS plus the get-off-the-ground ease of SaaS
- Low cost of entry
- Ease of quick prototype

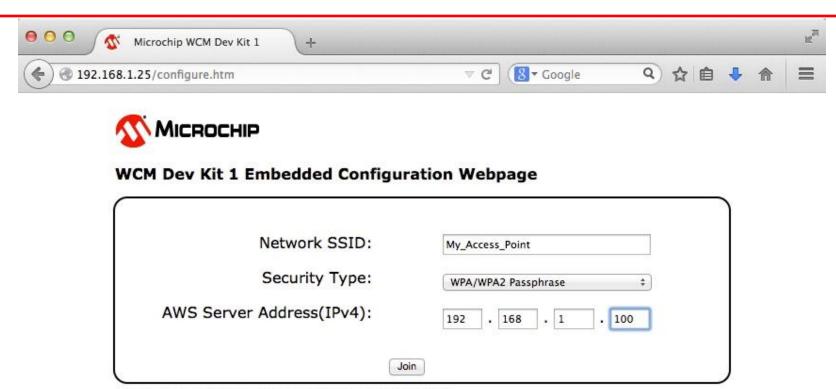

Microchip and Amazon AWS


- Amazon provide
 - Massive, cost effective, scalable infrastructure and services
- Microchip has created a server image that is available at Amazon for <u>free</u>
 - Linux, Apache, PHP, MySQL
 - Preconfigured to work as a web-based compliment to the WCM Demo Kit
- Microchip works directly with Amazon's AWS staff to provide solutions that can be deployed with Microchip embedded hardware and Amazon servers
 - Solution = Client hardware + Pre-configured Server image as a hybrid SaaS + PaaS + IaaS.
 - Low cost of entry
 - Quick to prototype with complete software/firmware transparency

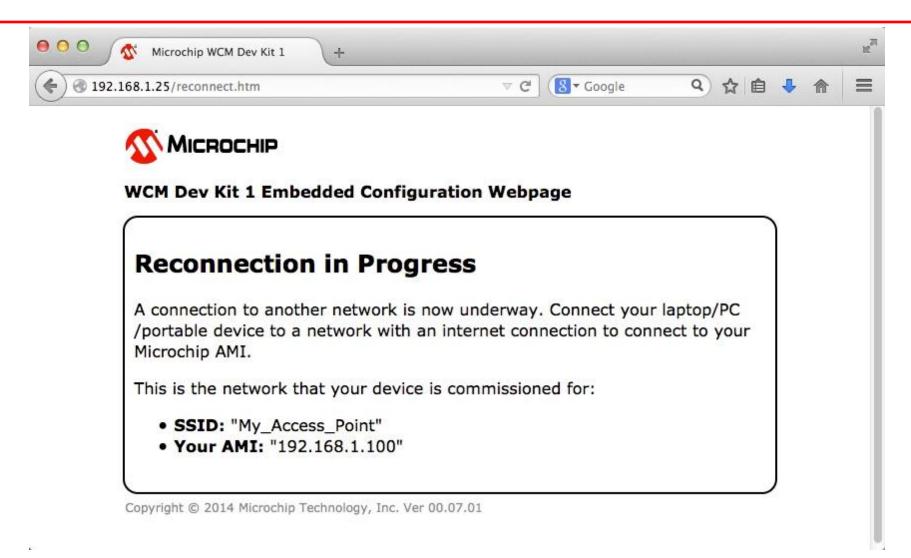
WCM Development Kit 1



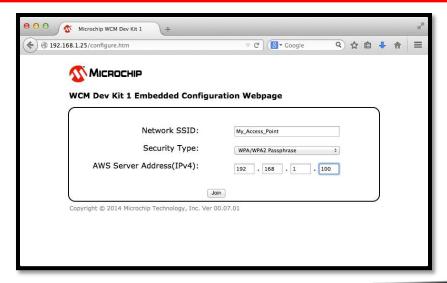
WCM Development Kit 1 (DM182020)

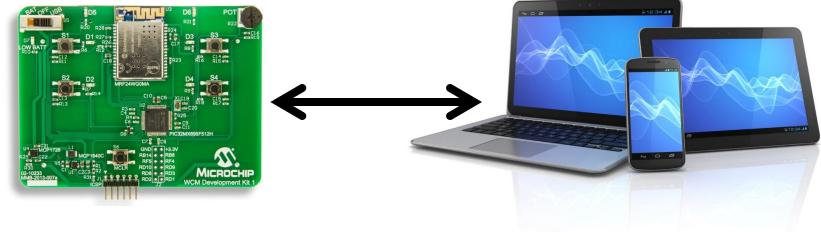


How it works as a platform

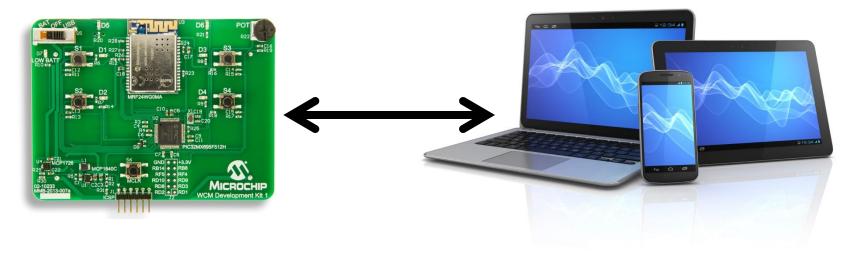

Enter AP / EC2 Info

Copyright © 2014 Microchip Technology, Inc. Ver 00.07.01

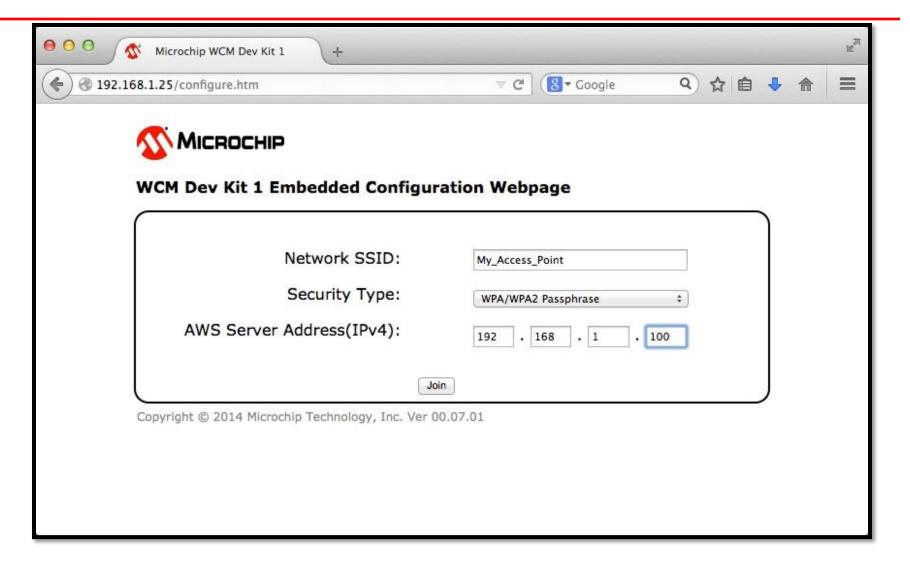



Reconnection

How We Commission WCM Development Kit 1



Soft AP Mode


 Allows device to become centralized coordinator for network (like an Access Point)

SSID: WCM_Soft_AP_XXXX

Configuration Webpage

Webpage

Summary

The Future is in Embedded IoT

- Advancing technologies in wireless
- Lower power and lower cost solutions
- The Internet of Things is changing the embedded world
- Smart devices and cloud connectivity create new opportunities
- Multiple wireless solutions for a given application
- Microchip provide complete solutions

30 Billion Connected Things by 2020

Any Questions?

Thank You

Trademarks

- The Microchip name and logo, the Microchip logo, dsPIC, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
- FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
- Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense,
 HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
- SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
- All other trademarks mentioned herein are property of their respective companies.
- © 2014, Microchip Technology Incorporated, All Rights Reserved.