

FP7 ICT 2013.6.2

Green Data Net – datacenters in Europa op basis van zonne- en windenergie

ICTroom, ir. Norbert Engbers

(ir. Eric Taen)

6 nov 2014 - IT Room Infra

Deze lezing wordt u aangeboden door:

The Data Centre Facility Infrastructure specialist

Constructional

· Building, Interior, Brownfield, Greenfield

Mechanical

. Cooling, Fire Control, Pumps

Electrical

 Commercial power, No Break, Short Break. Main Boards, Sub Boards, Rack power

Room Infra

· Racks, Data cabling, PDU, Security

Management

 Maintenance, 24/7 security staffing, Customer Implementation, Uptime DFI

Expertise

. Consultancy, Design, Quick scans, Audits

 Leading Specialist in Data centre Facility Infrastructure

 SME Employing > 50 data centre professionals with a yearly turnover of 24 Mio €

FP7 ICT-2013.6.2

Data Centers in an Energy-Efficient and Environmentally Friendly Internet

Call for projects

"Development of system level technologies and associated services the energy and environmental performance of data centers"

Expected results

GreenDataNet will address data centre challenges by developing:

- An integrated energy management system that can monitor and automatically optimise power, cooling, IT and storage in individual data centres.
- An extension of this system towards networks of data centres to achieve higher share of renewable energy and facilitate smart grid integration.
- The necessary hardware, software and prediction models to efficiently integrate local PV resources into data centres.
- The overall cost of the project is €4.3m. The European Commission has made a grant of €2.9m to fund the project.

FP7 ICT-2013.6.2

Data Centers in an Energy-Efficient and Environmentally Friendly Internet

Consortium GreenDataNet

FAT-N	Eaton Power Quality France	Large Enterprise (Industrial)	Project coordination; power architectures; virtualisation technologies; demonstration and pilots; dissemination
cea	CEA Solar Energy Institute France	Research institute (Industrial)	Energy management and prediction; renewable integration; smart grid schemes
□ ICT room	. ICTroom Netherlands	S/M Enterprise (Integrator)	Data centre requirements; energy monitoring tools; Demonstration and pilots
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE	Swiss Federal Institute of Technology Lausanne Switzerland	University (Research)	IT/cooling optimisation; control algorithms; energy monitoring
NISSAN	Nissan International Switzerland	Large Enterprise (Industrial)	Storage using second life EV batteries
CREDIT SUISSE	Credit Suisse Switzerland	End user	End user experience and one of the Pilots
UNIVERSITY OF TRENTO - Italy	University of Trento Italy	University (Research)	Smart grid optimisation algorithms

Expectations from the European Commission

- <u>Technology exploration</u>, not product development
 but should facilitate and accelerate future product development
- Holistic approach innovation at <u>system integration level</u>, not individual component (IT, cooling, power) level
- Need to consider data centers in <u>urban environments</u> ("no Facebook data center on the North Pole")
 - Integration within surrounding environment (e.g. office buildings, municipal facilities) through <u>heat reuse</u>
 - Integration within existing / future smart grid schemes through <u>two-way connection to</u> <u>utilities</u> / load sharing
- Target of 80% renewable power, not at single data center level but at network of data centers, building or neighborhood levels

Data Centre Challenges

Data centres have become major contributors to the global rise in energy consumption and emissions

- About 2% of overall electricity consumption
- Rising faster than any other industry annual growth of 10-15%
- The EU has committed to reduce both energy consumption and emissions by 20% by 2020 – data centres need to take their share of cuts
- IT equipment accounts for only about a third to a half of the total consumed power

Urban Data Centre Challenges (1)

Addressing these challenges faces additional hurdles ...

- Improving data centre <u>energy efficiency</u> is still based on a "silo approach"
 - Most efforts have focused on individual components (servers, cooling ...)
 - Further improvement could be obtained through integration of the 3 silos (IT, cooling, power)
- 2. Effective <u>energy management</u> through DCIM experiences significant adoption barriers
 - Cost, complexity and installation effort are important obstacles, especially for small and medium size data centres
 - Unclear pricing and return on investment

Urban Data Centre Challenges (2)

- 3. Making further use of <u>renewables</u> and <u>heat reuse</u> have met mixed results
 - Need to cope with variable and intermittent nature of most viable sources of alternative power
 - Technical feasibility of data centre heat reuse
- 4. Connecting to **smart grid** schemes faces several obstacles
 - No appropriate integration of local energy sources (e.g. wind, solar)
 - Unavailability of large scale storage capabilities

GreenDataNet

➤ Aims at addressing these challenges with a system level optimisation solution, allowing a network of urban data centres to collectively improve their energy and environmental performance

Development of integrated smart energy management and optimisation techniques...

• ..at incrementing levels:

Network of distributed DC's

Data Centre

Rack(s) & Servers

Urban DC's

Strengths and Weaknesses

- •In general less focus on energy efficiency
- Monitoring and optimal operation usually less implemented
- •Due to scale few possibilities for large efficient installations
- Close to heat users
- Less complex, better predictable
- Easier use of renewable energy sources
- Better feasible pilots for optimised energy management

Data Centre Market - Rack to Grid Strategy

FH UIT ROOM

Server & Storage - Installed Base Forecast

Source: "Forecast: Data Centers, Worldwide, 2010-2015", October 2011

Despite higher growth in the large DC space, Small-to-Midsize data centers will continue to represent 40% of the installed base

Data Centre Today

Energy Management at Data Centre Level

Monitoring and optimization from Rack to Grid

Type casting data centres

Item	Variation	
Quantity of racks	Few - Thousands	
IT-Area	Small – Medium - Large	
Power	Small – Medium - Large	
Business	Hosting – Colocation - Enterprise	
User	Single tenant - Multi tenant	
Life cycle phase	Green field - Brown field - Refurbishment	
Operation	Lights out - 365/24 personnel	
Equipment	Telecom equipment - Server equipment	
Levels Availability	Low High	
Levels Security	Low High	
Levels Efficiency	Low High	
Location	Rural – Industrial – Urban	
	•••	

DC Specification

Urban DC Types

Urban DC type specification

Urban DC type I

Urban DC type II

Urban DC type specification

Urban DC type I

- Availability Tier ranges (I II)
- N or N+1 topologies
- Mainly DX cooling
- Local UPS or even UPS per rack
- Applied in SME
- Single user
- Location within or nearby a city
- Non-data centre specific building
- Limited monitoring and security systems

IT ROOM INFRA

Urban DC type II

- Availability Tier ranges (II III)
- N+1 topologies, even some 2N
- DX systems or dedicated systems using chilled water cooling
- Typically centralised UPS
- Applied in SME, Governmental, NPOs, Corporates
- Location within or nearby a city
- Better monitoring and security systems

Urban DC Specification

Urban DC type I and II

- Environmental conditions accord
 ASHRAE → A2
 - 10 35 °C at server inlet
 - 20 80 % R.H.
- PUE ~ < 1,3
- Local Energy sources
- Focus on PV power and re-use of EV batteries

ASHRAE Environmental Classes for Data Centers

Urban DC Specification

- A clear trend is visible of new data centres that are based on modular architectures made of multiple type II data centres.
- Therefore Urban Data
 Centre type I and II do
 also allow the project to
 cover a broad range of
 data centres, from IT
 room with few kW of IT
 load to few MW data
 centres.

KPI's

- GreenDataNet
 cooperates with projects
 DOLFIN, GENIC, RenewIT,
 DC4Cities, GEYSER,
 All4Green and CoolEmAll
- Investigation of KPI's by this Smart City cluster
- Too many...

No	КРІ	No	КРІ	
1	Power Usage Effectiveness (PUE)	41	Green Energy Coefficient (GEC)	
2	Corporate Average Data Center Efficiency (CADE)			
3	Data Center Infrastructure Efficiency (DCIE)		Energy Reuse Effectiveness (ERE)	
4	Compute Power Efficiency (CPE)		Energy Reuse Effectiveness (ERE) Carbon Emission Factor (CEF)	
5	Data Center Energy Productivity (DCeP)		Carbon Intensity per Unit of Data (CIUD)	
6	Data Centre Utilisation (DCU)		Green Power Usage Effectiveness (GPUE)	
7	Server Compute Efficiency (ScE)		Return of Green Investment (RoGI)	
8	Data Center Compute Efficiency (DCcE)		Total Cost of Ownership (TCO)	
9	Coefficient of Performance of the Ensemble (COP)		Carbon Credit	
10	Energy Efficient Ratio (EER)		PAR4 *	
11			Building Heat Loss	
12	Seasonal Energy Efficient Ratio (SEER) Imbalance of Racks Temperature		Weighted energy Balance in Data Centres	
13	Data Center Power Density (DCPD)		Global KPI of Energy Efficiency	
14	Data Center Fower Density (DCPD)		Data Centre Performance per Energy (DPPE)	
15	Space, Watts, and Performance *		Load match and Grid Interaction indicators	
16	Useful work *	55 56	IT- power usage effectiveness (ITUE)	
17	Data Centre Productivity	57	Total power usage effectiveness (TUE)	
18	Transactions per second per Watt (TPS/Watt)	58	Data Centre Fixed to Variable Energy Ratio (DC FVE	
19	Deployed Hardware Utilization Ratio (DH-UR)	59	Partial Power Usage Effectiveness (pPUE)	
20	Deployed Hardware Utilization Efficiency (DH-UE)	60	IT Equipment Energy Utilization (ITEU)	
	Site Infrastructure Power Overhead Multiplier (SI-			
21	POM)	61	IT Equipment Energy Efficiency (ITEE)	
22	IT Hardware Power Overhead Multiplier (H-POM)	62	Green Energy Coefficient (GEC)	
23	Server Utilization / Hardware Utilization / Network Utilization	63	Energy Consumption KPI (KPIEC)	
24	Relative Humidity Difference (RHD)	64	Task Efficiency KPI (KPITE)	
25	HVAC Effectiveness	65	Energy Reuse KPI (KPIREUSE)	
26	Rack Cooling Index (RCI)	66	Renewable Energy KPI (KPIREN)	
27	Data Center Cooling System Efficiency (CSE)	67	Global Synthetic KPI (KPIGP)	
28	Air Economizer Utilization (AEU)	68	Data Center Maturity Model (DCMM)	
29	Water Economizer Utilization (WEU)	69	Code of Conduct *	
30	Airflow Efficiency (AE)	70	Return Temperature Index (RTI)	
31	Air management flow indicators	71	Physical Server Reduction Ratio (PSRR)	
32	Cooling System Sizing (CSS)	72	Data Centre Measurement, Calculation and Evaluation Methodology (DOLFIN Project) *	
33	Total harmonic distortion (THD)*			
34	UPS Load Factor			
35	UPS System Efficiency			
36	UPS Usage			
37	Lighting Density*			
38	Carbon Usage Effectiveness (CUE)			
39	Carbon Emissions Balance			
40	Motor Hooga Effectiveness /MILIEN			

Reduced KPI's

Cluster activity, in conjunction with ISO/IEC JTC1 SC39-WG1

No	KPI description	KPI
1	Power Usage Effectiveness	PUE
2	Partial Power Usage Effectiveness	pPUE
3	Energy Reuse Effectiveness	ERE
4	Renewable Energy Factor	REF

Data centre location 'selector'

QGIS tool and GreenDataNet

- Open Source tool
- Integration of several maps format
- Ability to compile several maps
- Easiness of use

Customized criteria

Grid connected PV inverter

- Grid-connected solar inverter:
 - Typical weighted efficiency: ~96%
 - Disconnection device(s) needed for islanding/anti-islanding
- Power conversions efficiency: 91%
- Power backfeed to utility grid is possible

DC/DC connected PV inverter

- DC/DC-converter for PV connection:
 - Output voltage of the DC/DCconverter shall be matched with UPS DC-link voltage
 - MPPT control implemented to DC/DC-converter
- Power conversions efficiency 95%
- Power backfeed to utility grid is possible (depends on the rectifier topology)
- PV array voltage can be lower

Energy Storage and PV Architecture Design

DC bus connected PV inverter

- Highest power conversion efficiency reachable: 96%
- PV array voltage range shall be carefully matched with UPS DC-link voltage range
- High voltage PV array in needed
- MPPT algorithm required in rectifier, inverter and battery converter control
- Power backfeed to utility grid is possible (depends on the rectifier topology)
- The most integrated system solution

Electric vehicles in Europe

Electric vehicles in Europe

http://en.wikipedia.org/wiki/History of the electric vehicle

First generation Prius

FHI & IT ROOM INFRA

Renault-Nissan Battery 2nd life strategy

Battery module structure will be redesigned to create new package that satisfy the varying voltage or capacity needs of customers.

Energy Storage and PV Architecture Design

 Nissan batteries were already used in applications for the residential and grid market

- Evaluation of the Battery specification data centre applications
 - Different voltage range between
 Nissan battery (240V-403V) and
 UPS battery charger (330-500V):
 - HW modification on charger required
 - Modification of the control of the BMS needed
 - Available capacity in discharging: ~70 90% (depending on the C-rate)
 - Capacity of the UPS battery charger is limited

Dank voor uw aandacht!

Contactgegevens:

ICTroom Company by

Tokyostraat 27, Lijnden

+ 31 (0)20 820 3000

www.ictroom.com

Standnr 20

http://www.greendatanet-project.eu

Deze lezing werd u aangeboden door:

