

Computer Time Synchronization Aspects

Martin Burnicki, Meinberg Funkuhren martin.burnicki@meinberg.de

Wilbert Leenders, T&M Systems

The Time and Frequency Company

Your Partner in T&M Knowledge

Agenda

- Some Basics
- Network Time Protocols
- Ways to Distribute Time
- Accuracy considerations

Who Needs Time Synchronization?

ROOM

- 1. Air Traffic Control
- 2. Research Vessels
- 3. Oil Production
- 4. Satellite Communication
- 5. Observatories
- 6. Power Substations
- 7. Power Plants
- 8. Toll Charging Systems
- 9. Wind Energy Plants
- 10. Public Infrastructure
- 11. Production Flow
- 12. Banks, Cash Terminals, Stock Exchange, Data Centers
- 13. Lottery
- 14. Traffic Management
- 15. Operation Coordination
- 16. Event Management
- 17. Wall Clocks
- 18. Lighting Control
- 19. Railway Time Table
- 20. Radio Broadcasting
- 21. Mobile Communication Call Data Records
- 22. Outside Broadcast Van
- 23. Emergency

World Time vs. Local Time

- World has been divided into 24 time zones
- Time zones usually differ by 1 hour
 - A few regions have local times 15, 30, or 45 minutes off
- Time zone borders often follow borders of countries
- Many countries are in a single time zone
 - People often don't care about the time zone
- Large countries span several time zones
 - People are used to account for different times in different zones
- Time zones are derived from common world time (UTC)

Computer UTC vs. Local Time (1)

- Computer system time is usually kept as UTC
- Converted to local time according to user preferences (configuration)
- On Windows usually only a single time zone setting
- On Unix/Linux even single processes can run with different time zone settings
- Switching to/from daylight saving (DST) is done by the operating system

Computer UTC vs. Local Time (2)

- Time synchronization only adjusts UTC system time
- If UTC time is correct then local times are also correct
- Time zone parameters and DST are not job of time synchronization software
- Time zone rules stored on the client
- New tzdist protocol coming to simplify update of time zone rules on clients

System Time Resolution

- On some operating systems limited to timer tick
 - Windows XP / Server 2003: about 16 ms
 - Windows Vista / Server 2008: 1 ms
 - Windows 8 / Server 2012: sub-microsecond resolution
 - Reading system time yields same time during timer tick!
- Other operating systems provide better resolution
 - Linux / Unix: microseconds or even nanoseconds
 - Reading system time yields always different time stamps
- Nanosecond **resolution** does not necessarily mean nanosecond **accuracy**, but high resolution is a precondition for high accuracy.

Computer Time Synchronization Aspects (1)

- Where do I get the time from? At which accuracy?
 - Radio clock
 - Time server / network
- Which ways exist to get the time?
 - PCI card: Can get the current time always, immediately
 - Serial: Wait for time string. When sent? Transmission delay?
 - Network: Send query, wait for reply
 - Compensate network delay and other transmission delays

Computer Time Synchronization Aspects (2)

- Resolution of the local system time
- Stability of the on-board system clock
 - Quartz frequency offset, drift with temperature, virtualization
- Time synchronization software
 - Which resolution is supported?
 - Is transmission delay compensated?
- How is system time adjusted? Set periodically? Smoothly?
- Very important: Handling of Leap Seconds by OS or client

Network Time Synchronization Protocols

- Network Time Protocol (NTP)
 - Invented later in the 1980s, 0.2 ns resolution \rightarrow supports high accuracy
 - Current protocol version is v4, compatible with older versions
 - Standard protocol for time synchronization in Unix/Linux, and Windows
 - Reference implementation available as free software
- Precision Time Protocol (PTP/IEEE1588)
 - v1 from 2002, v2 from 2008, v2 is not compatible with v1
 - Nanosecond resolution, eventually yields some nanoseconds accuracy under specific conditions (e.g. hardware timestamping on every node)
 - Open source implementation available

General Network Time Transfer (1)

Example: NTP protocol

- t1: Client sends request packet to servert2: Server receives request packet from clientt3: Server sends reply packet to clientt4: Client receives reply packet from server
- \rightarrow Four timestamps from one packet exchange
- \rightarrow Timestamps from server are server time
- \rightarrow What's the offset between server time and client time?
- \rightarrow How long did the request and reply packet travel on the network?
- ightarrow High accuracy if the network delays are the same in both directions

General Network Time Transfer (2)

- Network delays are not constant → filtering required on the client !
- Achievable accuracy does not only depend on the accuracy of the server,
- It depends strongly on the implementation of the **client software**.
- When talking about NTP or PTP distinguish between protocol and implementation.

Network Delays Affecting Time Synchronization

- Delays in routers and switches
- Processing time of packets on server and clients
- IRQ latencies of high performance NICs
 - Interrupt coalescence
- Hardware Timestamping can reduce variable network delays
- Required on every network node to get highest accuracy
- → Use PTP with special PTP-aware switches

Time Distribution (1)

Time Distribution (2)

- GPS card in each server, multiple GPS antennae
 - High accuracy
 - High cabling efforts for antennae
- GPS card in each server, single GPS antenna with diplexer(s)
 - High accuracy
 - Only single cable to antenna, but special antenna cables to each GPS card

Time Distribution (3)

- Single, GPS controlled NTP/PTP time server
 - Provides high accuracy to clients
 - Single antenna cable required
 - NTP with good accuracy for "normal" servers
 - PTP with highest accuracy for special requirements
 - PTP PCI cards get high accuracy into a server
 - PTP-aware switches required for high accuracy
 - Standard patch cables instead of special antenna cables
- In any case limited accuracy with virtual machines

FHI UIT ROOM

Times Sources

- Long Wave Receivers
 - DCF-77, MSF, WWVB
 - Single transmitter per system
 - Varying signal propagation delay, low bandwidth
 - Millisecond accuracy only
- Satellite Systems
 - GPS, GLONASS, Galileo, Beidou
 - Multiple satellites per system
 - Propagation delay can be measured and compensated
 - Sub microsecond accuracy internally

Charactersistics Affecting Time Accuracy

- Protocol
- Transmission
- Operating System

BO

- Hardware
- Virtual Machines vs. Physical Machines

Conclusion

- Timekeeping accuracy depends on many facts
- Required accuracy depends on applications
- Higher accuracy requires higher effort, and thus solutions are usually more expensive
- Ask the experts for support in finding the solution which best meets the requirements of your application

Contact / Questions

- IT room Infra Stand nr.: 26
- Email Address: info@meinberg.de info@tmsystems.nl

Thanks for your attention!

