

OLED Efficacy

Introduction

Common statement from lighting customers: "OLEDs are only interesting for us if they reach an efficacy of 100 lm/W or more."

What is an OLED and how does it generate light?

Terminology: Efficacy and efficiency?

Efficacy and efficiency – technological overview on current OLED technology.

Comparison to LED technology: are current OLEDs fit for the market?

What is an OLED and how does it generate light?

What is an OLED and how does it generate light?

Example: bottom-emitting OLED → most commonly used design today

The major component in your success!

What is an OLED and how does it generate light?

Prof Monkman, OEM Research Group Department of Physics, Durham University

The major component in your success!

Generating white light: LED vs. OLED

LED: blue chip with yellow phosphor filter

OLED: RGB layer structure

Efficacy and efficiency - terminology

Efficacy of a light source (E):

$$E = \frac{L}{II * I}$$

L: luminous output of the device

U: operating voltage

I: operating current

Internal Quantum Efficiency (IQE): % of electrons the generate photons

External Quantum Efficiency (EQE): % of generated photons that exit the light source

Light emission process and main loss factors

Light emission process and main loss factors

$\eta_s + \eta_r = \%$ of radiative (light emitting) electron/hole combinations \rightarrow IQE

 $\eta_{\text{extr}} = \%$ of photons that leaves the device \rightarrow EQE

light

Internal Quantum Efficiency (IQE)

Fluorescent materials:

→ Very **stable**, **long lifetime** achievable but very **low efficiency**

 \rightarrow Traditional view: η_{smax} < 25%

 \rightarrow Latest research: $\eta_s = 40-60\%$ achieved in the lab

Phosphorescent materials:

- → Much higher efficiencies
- $\rightarrow \eta_{smax} \approx 100\%$
- → Currently no phosphorescent blue emitter with acceptable lifetime/ stability

Tandem structure common:

Fluorescent blue emitter + phosphorescent red/ green emitter

Internal Quantum Efficiency (IQE)

	% Photon			
CCT	Blue	Green	Red	
2700	10.9	21.1	68	
3000	14.2	22.4	63.4	
3500	18.5	23.1	58.4	
4000	23.1	23.5	53.4	
4500	27.5	22.7	49.7	
5000	31.2	22.2	46.6	
5700	35.4	20.8	43.8	
6500	39.8	19.4	40.8	

In the absence of stable/long-life phosphorescent blue emitters, most manufacturers use tandem structures:

Fluorescent blue emitter + phosphorescent red/ green emitter

Consequence:

- → Red/ green emitters have a much higher efficiency than blue emitter
- → The higher the blue content, the smaller the overall device efficiency

Source: Design Considerations for OLED Lighting, Tyan et al., 2015

Does OLED luminance decrease with increasing colour temperature?
→ It depends on the design focus of the manufacturer.

Consequences for OLED panel design

Additional considerations:

- Emitters can be stacked
- 2. Voltage and luminance in a stack are the sum of the individual emitters
- 3. Panel lifetime decreases superlinerarly with increasing current (and vice versa)
- 4. Panel costs increase with number of stacks

Example LG Chem panel range:

3000K panels use 3 stack layer structure, 4000K use 2 stacks.

- → 3000K are driven with higher voltage at lower current
- → Panel life significantly higher for 3000K compared to 4000K
- → Same rated efficacy and luminous flux for both types

Extraction efficiency

 $\eta_{\text{extr}} = \%$ of photons that leaves the device \rightarrow EQE

Only $\frac{1}{n^2}$ of the generated light gets out of the device

- → N = refractive index of layer materials the light has to pass through
- $\rightarrow N > 1$
- → < 20% of the generated light actually leaves the OLED

Extraction efficiency

OLED – out coupling efficiency influenced by several factors:

- Number of layers

 reflection/refraction at the barrier between two materials
- TIR total internal reflection
 light "trapped" inside the panel
- Light emitted at an disadvantageous viewing angle due to refraction
- Light emitted through the side of the panel due to refraction

Mehta et al: Light out-coupling strategies in organic light emitting devices, New Dehli, 2013)

14

Extraction efficiency

Some strategies to increase extraction efficiency

Figure 3 Use of micro-lenses for extracting substrate wave-guided modes.

High-refractive Glass guide modes coupled out

ITO HTL ETL Cathode

Figure 5. Use of two-dimensional photonic-Crystal structure for extracting the ITO/Organic wave-guided modes

Mehta et al: Light out-coupling strategies in organic light emitting devices, New Dehli, 2013)

External extraction schemes (EES)

Internal extraction schemes (IES)

- EES easier to apply but less effective → only 1 material barrier can be addressed
- IES much more effective but difficult to apply → risk of damaging the organic layers
- → Design optimization for the ideal OLED device:
 - Improving electrical efficiency, photon generation and life time by adding layers
 - Additional layers will come at the cost of higher refractive index

Luminous efficacy

Efficacy of a light source (E):

$$E = \frac{L}{U * I}$$

L: luminous output of the device

U: operating voltage

I: operating current

L is the photonic output of the device weighed by the colour sensitivity of the human eye.

Key factor for improving efficacy is an optimised devise structure of the emissive layer → enabling each colour to emit at achievable efficiency without too much

de-tuning.

	Cathode	
	ETL	
	BL	
	R:G EML	
	HTL	
	HIL	
	CGL	
	ETL	
100	BL	
	Blue EML	
	HTL	
	HIL	- 5
	ITO	

Luminous efficacy

	% Photon		1	All phosphorescent Tandem RGB+RGB	Hybrid Tandem B+RG
CCT	Blue	Green	Red		
2700	10.9	21.1	68	$EQE_{max} = 49.0\%$	$EQE_{max} = 56.1\%$
3000	14.2	22.4	63.4	$EQE_{max} = 52.6\%$	EQE _{max} = 58.3%
3500	18.5	23.1	58.4	EQE _{max} = 57.1 %	$EQE_{max} = 61.3\%$
4000	23.1	23.5	53.4	$EQE_{max} = 62.4\%$	$EQE_{max} = 65.0\%$
4500	27.5	22.7	49.7	$EQE_{max} = 67.0\%$	$EQE_{max} = 69.0\%$
5000	31.2	22.2	46.6	EQE _{max} = 71.5%	EQE _{max} = 64.1%
5700	35.4	20.8	43.8	EQE _{max} = 76.1 %	$EQE_{max} = 56.5\%$
6500	39.8	19.4	40.8	EQE _{max} = 81.7 %	EQE _{max} = 50.3%

Source: Design Considerations for OLED Lighting, Tyan et al., 2015

Device structure does matter!

OLED efficacy vs. LED efficacy

Status 2015
Standard LED efficacy > 120 lm/W → high end > 150 lm/W
Standard OLED efficacy 60 lm/W → high end 90 lm/W

Is the rated efficacy of an OLED and an LED directly comparable?

OLED efficacy vs. LED efficacy

Luminous Flux

Is that really the most important parameter? How about the application?

Luminaire efficacy much lower than efficacy of the light source.

OLED Panel is effectively a luminaire!

OLED efficacy vs. luminaire efficacy

System efficacy: light source, driver, thermal and optical losses Efficacy of lamp or LED package

Indoor luminaires efficacy trends

Source: CALiPER: Snapshot Indoor LED Luminaire, DOE, Apr. 2014

Snapshot from the CALiPER program on LED luminaire efficacies.

Further reading

Copyrighted Material

The OLED Handbook

A Guide to OLED Technology, Industry & Market

Thank you for your attention.

Efficiency challenges in OLEDs

