

Optical: Light intensity

- Total flux lumen (lm)
 - CIE 127:2007 measured in an Integrating sphere
- Intensity candela (cd) = lumen / solid angle [lm/sr]
 - According to CIE 127:2007 I_{LEDB} standard
- Illuminance lux (lx) = lumen / square meter [lm/m2]
 - Not an LED parameter used for General lighting standards

Lumen [lm]

Lux [lx]

Efficacy of LEDs

Efficacy of led - Conversion of electrical power into light

Efficacy:
$$\frac{P_{out}}{P_{in}} = \frac{Optical\ output}{V*I}$$

- Optical output power How much light come out from the LED
- Total input power Electrical power $W = V \cdot I$
- Typical Efficacy curve
 - Peak at low current
 - Decrease up to 100% with current Increase
 - Typical values

Date DD.MM.YYYY | Technical Academy | Public/ Confidential / Internal Use | Name of the file

Power output and thermal management

- Thermal resistivity defines how temperature generated in the chip is released in the ambient
- Higher resistivity warmer chip
- Low power LEDs < 0.5W
 - Low thermal specifications
 - Low luminescence output
- High power LEDs > 1W
 - High thermal flows
 - Sensitive to thermal design
 - High luminescence output

$$T_j = T_a + R_{ja} * P_{Diss}$$

T_i – junction temperature

 T_a' – ambient temperature

 $\mathbf{R}_{\mathbf{j-s}}$ – thermal resistivity between junction and pad

 R_{s-a}^{l-s} – thermal resistivity between pad and ambient $R_{l-a} = R_{l-s} + R_{s-a}$ – thermal resistivity of the whole package

Derating curve and thermal management

- Understanding the Derating curve
 - Link between maximum forward current and maximum ambient temperature

$$T_{j} = T_{a} + R_{ja} * P_{Diss}$$

$$P_{Diss} = V_{F} * I_{F}$$

$$I_{F} = \frac{T_{j} - T_{a}}{R_{ja} * V_{F}}$$

Constant parameters:

 $R_{j-s} = 8-10 \text{ K/W}$ $V_F - \text{depends on material}$

T_i - maximum allowed junction temeprature

Maximum driving current depends on $\mathbf{R}_{\mathbf{j-a}}$ - good thermal conductivity design of the structure is needed

Thermal management Link between junction temperature and ambient temperature $T_j = T_a + R_{ja} * P_{Diss}$ Luminous intensity, Wavelength and Forward voltage depend on T_i Efficiency losses up to 80% Low junction temperature is important for efficient LED work 180.0 Thermal design for predefined operation 160.0 ℤ 140.0 Constant operating current Constant operating voltage 120.0 100.0 Constant ambient temperature 80.0 Good thermal conductivity design is 60.0 important to support higher 40.0 efficiency output. 0.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 Junction Temperature [C]

