
OLED Efficacy

You Create, We Light

LG Chem OLED Light

Introduction

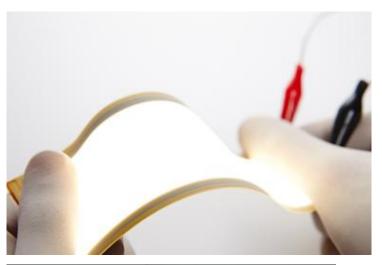
Common statement from lighting customers: "OLEDs are only interesting for us if they reach an efficacy of 100 lm/W or more."

What is an OLED and how does it generate light?

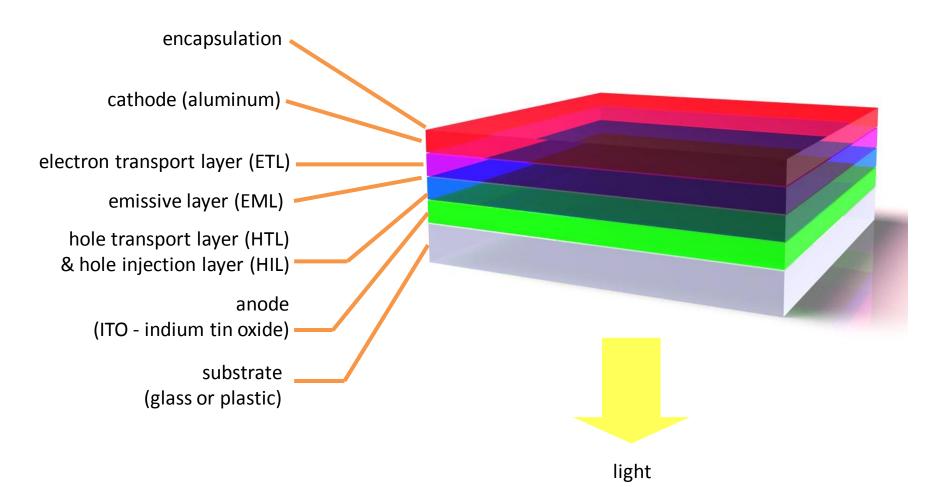
Terminology: Efficacy and efficiency?

Efficacy and efficiency – technological overview on current OLED technology.

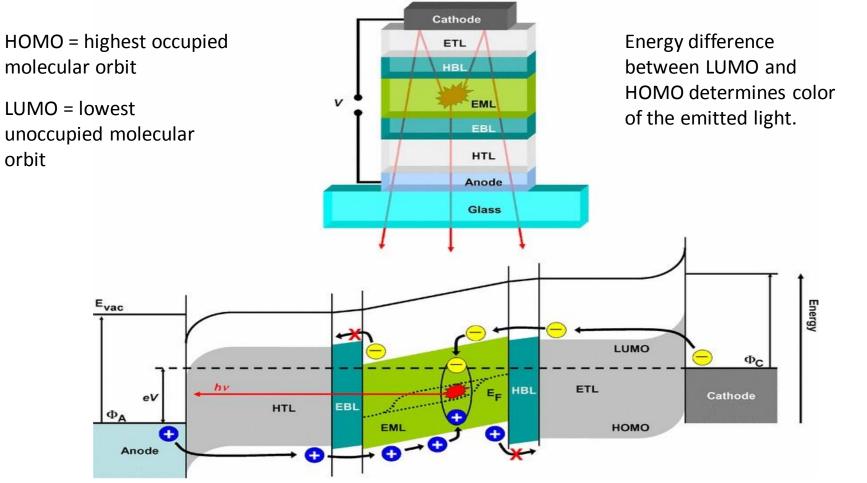
Comparison to LED technology: are current OLEDs fit for the market?



What is an OLED and how does it generate light?



What is an OLED and how does it generate light?



Example: bottom-emitting OLED \rightarrow most commonly used design today



What is an OLED and how does it generate light?

Prof Monkman, OEM Research Group Department of Physics, Durham University

Generating white light: LED vs. OLED

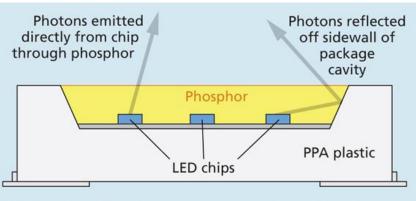
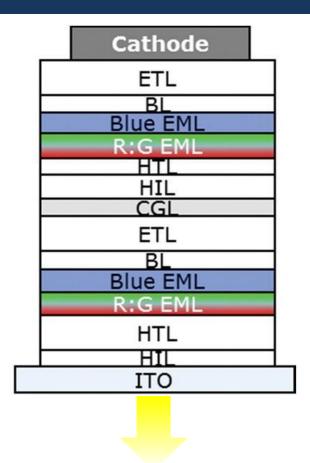



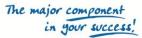
FIG. 1. A simplified cross-section of a plastic LED package.

LED: blue chip with yellow phosphor filter

OLED: RGB layer structure

Efficacy and efficiency - terminology

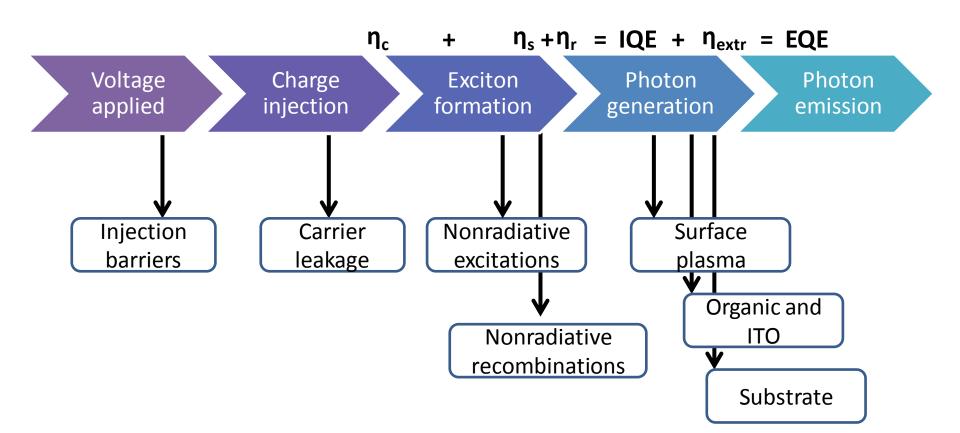
Efficacy of a light source (E):


$$E = \frac{L}{U * I}$$

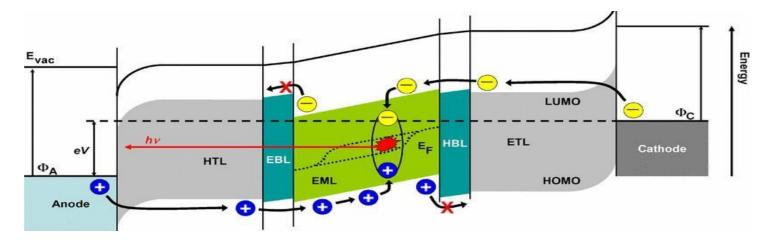
T

L: luminous output of the device U: operating voltage I: operating current

Internal Quantum Efficiency (IQE): % of electrons the generate photons


External Quantum Efficiency (EQE): % of generated photons that exit the light source

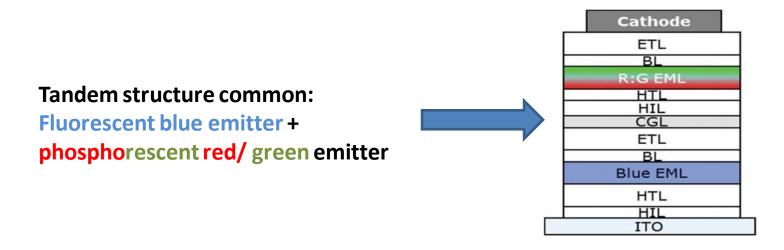
Light emission process and main loss factors



Light emission process and main loss factors

$\eta_s + \eta_r = \%$ of radiative (light emitting) electron/hole combinations \rightarrow IQE

$\eta_{extr} = \%$ of photons that leaves the device \rightarrow EQE


Internal Quantum Efficiency (IQE)

Fluorescent materials:

- → Very stable, long lifetime achievable but very low efficiency
- → Traditional view: $\eta_{smax} < 25\%$
- \rightarrow Latest research: η_s = 40-60% achieved in the lab

Phosphorescent materials:

- \rightarrow Much higher efficiencies
- $\rightarrow \eta_{\text{smax}} \approx 100\%$
- → Currently **no phosphorescent blue emitter** with acceptable **lifetime/ stability**

Internal Quantum Efficiency (IQE)

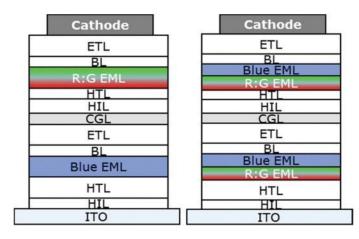
	% Photon				
ССТ	Blue	Green	Red		
2700	10.9	21.1	68		
3000	14.2	22.4	63.4		
3500	18.5	23.1	58.4		
4000	23.1	23.5	53.4		
4500	27.5	22.7	49.7		
5000	31.2	22.2	46.6		
5700	35.4	20.8	43.8		
6500	39.8	19.4	40.8		

In the absence of stable/long-life phosphorescent blue emitters, **most manufacturers** use **tandem structures**:

Fluorescent blue emitter + phosphorescent red/ green emitter

Consequence:

- → Red/green emitters have a much higher efficiency than blue emitter
- → The higher the blue content, the smaller the overall device efficiency


Source: Design Considerations for OLED Lighting, Tyan et al., 2015

Does OLED luminance decrease with increasing colour temperature? \rightarrow It depends on the design focus of the manufacturer.

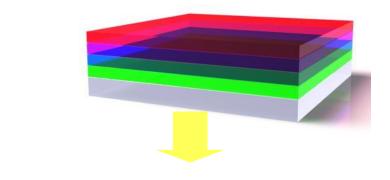
Consequences for OLED panel design

Additional considerations:

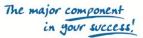
- 1. Emitters can be stacked
- 2. Voltage and luminance in a stack are the sum of the individual emitters
- 3. Panel lifetime decreases superlinerarly with increasing current (and vice versa)
- 4. Panel costs increase with number of stacks

Example LG Chem panel range:

3000K panels use 3 stack layer structure, 4000K use 2 stacks.

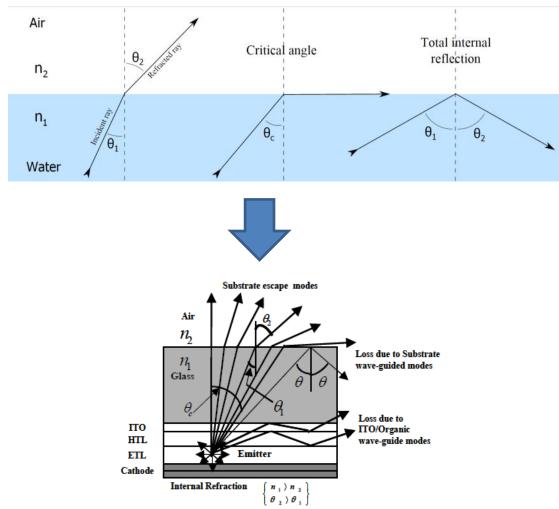

- → 3000K are driven with higher voltage at lower current
- → Panel life significantly higher for 3000K compared to 4000K
- → Same rated efficacy and luminous flux for both types

Extraction efficiency


 $\eta_{extr} = \%$ of photons that leaves the device \rightarrow EQE

Only $\frac{1}{n^2}$ of the generated light gets out of the device

→ N = refractive index of layer materials the light has to pass through → N > 1


 \rightarrow < 20% of the generated light actually leaves the OLED

Extraction efficiency

OLED – out coupling efficiency

influenced by several factors:

 Number of layers → reflection/refraction at the barrier between two materials

TIR – total internal reflection
→ light "trapped" inside the panel

- Light emitted at an disadvantageous viewing angle due to refraction
- Light emitted through the side of the panel due to refraction

Mehta et al: Light out-coupling strategies in organic light emitting devices, New Dehli, 2013)

Extraction efficiency

Some strategies to increase extraction efficiency

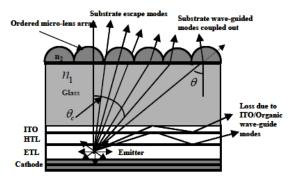
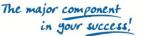


Figure 3 Use of micro-lenses for extracting substrate wave-guided modes.

Mehta et al: Light out-coupling strategies in organic light emitting devices, New Dehli, 2013)

External extraction schemes (EES)

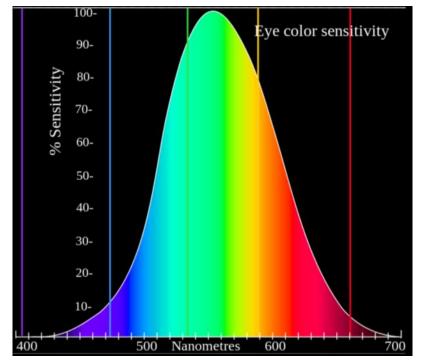

Air N_2 Highrefractive index PC larer HIL ETL Cathode Figure 5. Use of two-dimensional photonic-

Crystal structure for extracting the ITO/Organic wave-guided modes

Internal extraction schemes (IES)

- EES easier to apply but less effective \rightarrow only 1 material barrier can be addressed
- IES much more effective but difficult to apply \rightarrow risk of damaging the organic layers
- \rightarrow Design optimization for the ideal OLED device:
 - Improving electrical efficiency, photon generation and life time by adding layers
 - Additional layers will come at the cost of higher refractive index

03.12.2015


Luminous efficacy

Efficacy of a light source (E):

$$E = \frac{L}{U * I}$$

L: luminous output of the deviceU: operating voltageI: operating current

L is the photonic output of the device **weighed by** the **colour sensitivity** of the **human eye**.

Key factor for improving efficacy is an optimised devise structure of the emissive layer \rightarrow enabling each colour to emit at achievable efficiency without too much

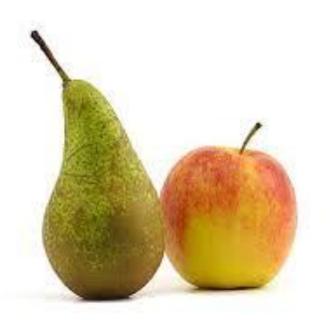
de-tuning.

Cathoue	
ETL	
BL	
R:G EML	_
HTL	
HIL	
CGL	
ETL	
BL	
Blue EML	
HTL	
HIL	100
ITO	
	BL R:G EML HTL HIL CGL ETL BL Blue EML HTL HIL

Luminous efficacy

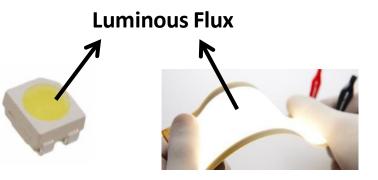
	% Photon		1	All phosphorescent Tandem RGB+RGB	Hybrid Tandem B+RG
ССТ	Blue	Green	Red		
2700	10.9	21.1	68	EQE _{max} = 49.0%	EQE _{max} = 56.1%
3000	14.2	22.4	63.4	EQE _{max} = 52.6%	EQE _{max} = 58.3%
3500	18.5	23.1	58.4	EQE _{max} = 57.1%	EQE _{max} = 61.3%
4000	23.1	23.5	53.4	EQE _{max} = 62.4%	EQE _{max} = 65.0%
4500	27.5	22.7	49.7	EQE _{max} = 67.0%	EQE _{max} = 69.0%
5000	31.2	22.2	46.6	EQE _{max} = 71.5%	EQE _{max} = 64.1%
5700	35.4	20.8	43.8	EQE _{max} = 76.1%	EQE _{max} = 56.5%
6500	39.8	19.4	40.8	EQE _{max} = 81.7%	EQE _{max} = 50.3%

Source: Design Considerations for OLED Lighting, Tyan et al., 2015


Device structure does matter!

OLED efficacy vs. LED efficacy

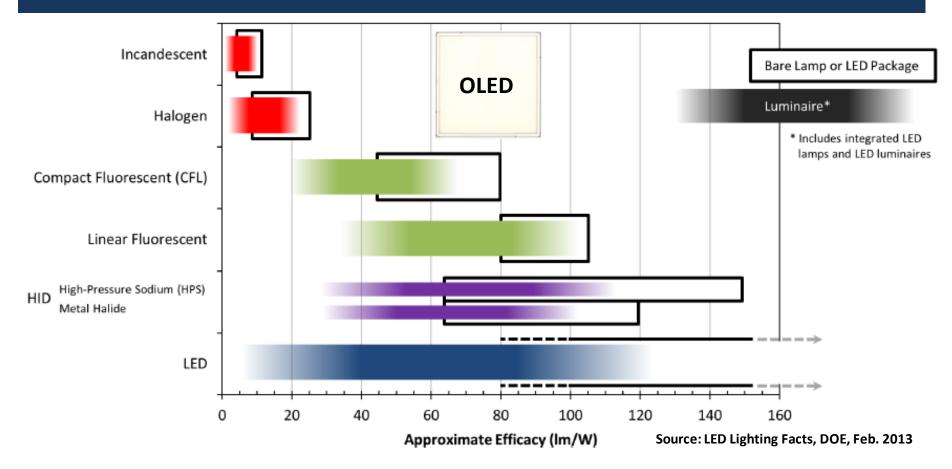
Status 2015 Standard LED efficacy >120 lm/W → high end > 150 lm/W Standard OLED efficacy 60 lm/W → high end 90 lm/W


Is the rated efficacy of an OLED and an LED directly comparable?

OLED efficacy vs. LED efficacy

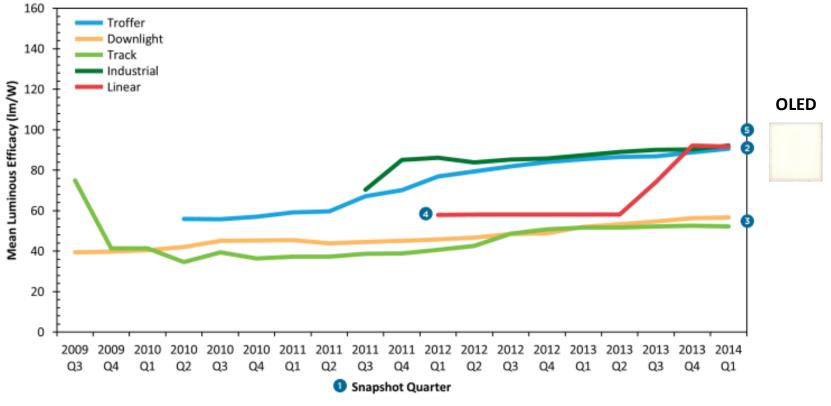
Is that really the most important parameter? How about the application?

Luminaire efficacy much lower than efficacy of the light source.

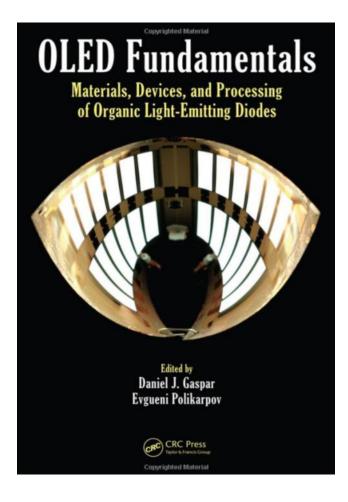


OLED Panel is effectively a luminaire!

OLED efficacy vs. luminaire efficacy


System efficacy: light source, driver, thermal and optical losses Efficacy of lamp or LED package

Indoor luminaires efficacy trends

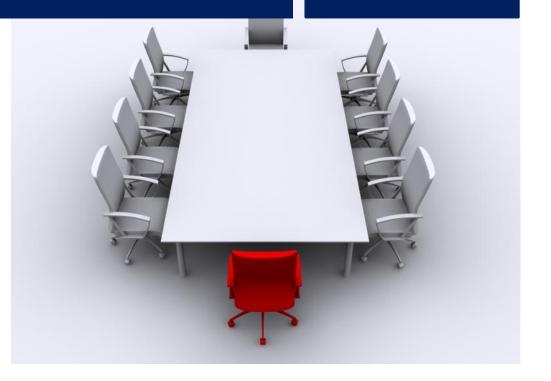

Source: CALiPER: Snapshot Indoor LED Luminaire, DOE, Apr. 2014

Snapshot from the CALiPER program on LED luminaire efficacies.

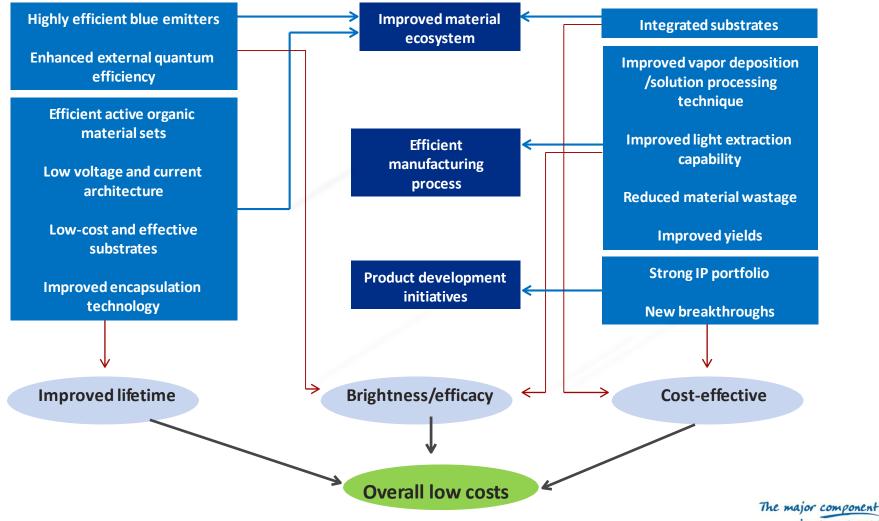
Further reading

Copyrighted Material

The**OLED** Handbook


A Guide to OLED Technology, Industry & Market

Thank you for your attention.



Efficiency challenges in OLEDs

in your succes