The future of lighting is smart

What is a smart light and smart lighting?

Smart lights:

- Light quality
- Monitors internal operating conditions and responds autonomously to fault conditions
- Peer to peer two way communications capability to receive commands and sensor inputs, responding autonomously, and transmit status and event information
- Able to be programmed to modify response to sensor inputs
- Tracking, storing and reporting operating history

Smart lighting:

 A combination of smart lights and the software program(s) used to set-up and configuring an installation to behave as we want when an event happens

Quality of Light

Color Vector Graphic

Red line: Xicato source Black line: reference illuminant

Monitors internal conditions and responds autonomously to faults Thermal Foldback example

2—way communication Comparing DALI and BLE

DALI - is it smart?

- •YES, in that 2 way communication is possible
- •But limited:
 - No autonomous responses to external events. Everything via Master.
 - Very difficult to build multi-layered causal relationships between devices
 - Latency issue can be unacceptably slow
 - Programming and data collection possibilities limited to DALI standards and what the DALI Master supports
- •Provisioning / commissioning far large installations is complex:
 - All processing for every sensor response takes place in a central place
 - Expansion beyond 64 services requires bridging between DALI bus Masters

2—way communication Comparing DALI and BLE

DALI Compared with BLE

- •BLE solves these issues, and:
 - Allows for possibility for indoor positioning services
 - -Allows for web or app based developments
 - -Advantages of wireless systems ito no 'above the ceiling' expense
 - -No 64 device limit on a single interface

• BUT:

- -Requires addition security layers
- Suitable for local networks: for wider systems gateways needed.

Bluetooth Low Energy – a Brief Introduction

BLE is different from traditional Bluetooth

- Traditional Bluetooth
 - Dedicated pairings. Point to point connections.
 - Designed to support data streaming (e.g., voice/audio)

- No dedicated pairing peripherals advertise presence and availability to support connections
- Star connection topology
- Small data transfers
 - Device state information (temperature, device ID, light level, turn on, turn off, etc.)
 - Not for large data transactions e.g., file transfers, streaming, etc.

Why Bluetooth LE?

- Ubiquitous support on Smartphones/Tablets
 - Natively supported by iOS, Android,
 Windows 8, OSX, Linux and Blackberry
- Technology underlying iBeacon, Physical Web, Eddystone
- Strong momentum driven by IoT
- Easy to integrate into embedded devices
- Open Standard
 - Free to join SIG
 - Standards available for no charge
 - No licenses, etc.

Eddystone

BLE operating principle

Communication: lighting services

Applications: OEM configuration

Context: For OEMs to deal with the huge variation of lamps has always been an ordeal.

Configurable smart modules?

- Max flux, min flux
- Fade-rate
- Dimming curve
- End of life behavior (when, how manifested)
- OEM / fixture information
- Security in operation (eg thermal capability of luminaire cannot be exceeded)

Applications: commissioning and usage

Context: low adoption of lighting controls to date but at the same time as tighter energy conservation requirements

- Detect or set Location address
- Define groups and scenes
- Binding to switches and sensors
- Set security access levels
- Configure network connection (DALI, Wi-Fi, Zigbee etc.)

XICATO

Applications: maintenance and diagnostics

Context: maintenance is expensive, especially where image is concerned, eg retail. Constant surveillance, stock keeping of spares, keeping track on warranties

With smart diagnostics:

- Instantaneous information on running status
- Historical data
- Warranty options
- BIM

Communication: New Services

Indoor Location / Proximity Detection

Indoor location services and analytics Beacon placement

Lighting allows for **greater coverage** of the space c/w separate boxes. Less cluttered ceilings, less hardware to install and maintain.

Location becomes more precise as multiple beacons can be seen by a device

Indoor location services and analytics.

If the user is this close to this Beacon, then do this.

- Interaction: information on merchandise, works of art etc
- Analytics: tracking people's movements, how long they stay, where they linger.
 Space management
- Way finding especially airports, conferences
- **Emergency** phone services
- Asset tracking

State of Connected Lighting

The Big Picture - Interoperability

