Technology Demonstrator High Bay Preview Wolfgang Reis

thettomik

G

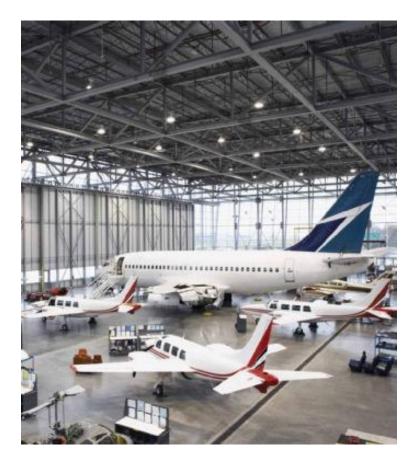
corporate Presentation

July 31st, 2014

High-bay lighting

Lighting where the roof trusses or ceiling height is greater than approximately 7.6 m above the floor.

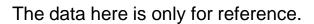
- Maximum productivity is top of the agenda in production halls. Lighting makes an important contribution.
- The right light distribution and light color prevent glare and signs of fatigue among employees. They also reduce the risk of accidents, make visual tasks easier and improve manufacturing efficiency.
- High bay lighting usually difficult to change the light sources. Long lifetime LED high bay lamp helps to reduce maintenance cost.



160W High Bay from ELS

Benefits of LED in high-bay applications

- An LED high-bay luminaire has multiple advantages over traditional metal-halide lamps.
- 1. No warm-up time
- 2. No cool down needed before restart
- 3. No humming or flickering
- 4. No mercury
- 5. Longer lifetime
- 6. No re-lamping cost, which can be a significant expense in high-bay applications
- 7. No risk of lamp breaking, sending glass fragments over a large area
- 8. Dimmable, enabling the use of occupancy sensors for power savings



High-bay lighting

Traditional solution with HID lamp

Solution	HID with aluminium reflector	HID with prismatic reflector
Light source efficacy	80~100 lm/w	80~100 lm/w
Luminaire power (W)	436 W	436 W
Lamp Luminous flux (Im)	29000 lm	29000 lm
Fixture lumens (Im)	20900	26800
System efficacy (Im/w)	48 lm/w	61.5 lm/w
Usable lumens within 60 deg (lm)	15770	17600
Application efficacy (lm/w)	36.2	40.4

aluminium reflector

HID metal halide lamp

prismatic reflector

Possible Solutions - 1

- A cluster of Mid-Power-Leds (100 pieces / 5000 Lumen)
- Advantages:
- Good spread of heat, smaller heat sink
- High Efficency (190 Lumen+ are available)
- Less Glare
- Formfactor does not matter. Linear and round Types
- Disadvantages
- Needs a PCB with a huge Number of parts.
- Big LES, not so easy to direct the light where needed
- Binning could be a problem
- EBV-Offer: Osram, Samsung, Everlight, Luminus

Possible Solutions - 2

- A cluster of High Power Leds (10-15 pieces for 5000 Lumen)
- Advantages
- Still a good spread of heat
- good Efficency (170 Lumen+ are available)
- Formfactor does not matter. Linear and round Types
- Good possiblities to direct the light
- Disadvantages
- Still needs a PCB-Layout.
- Binning could be a problem (Forwardvoltage)

EBV Offer: Osram, Samsung, Ledil

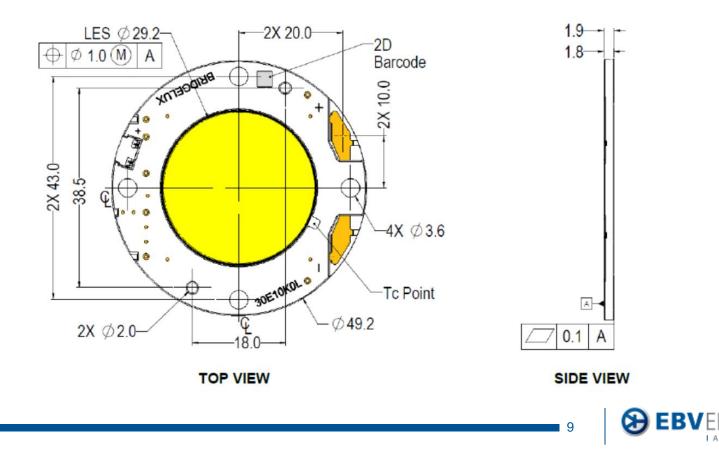
Possible Solutions - 3

- Singel-COB-Solution (1 for 15.000 Lumen)
- Advantages:
- Easy to control the light through small LES
- NO PCB needed
- Easy to mount
- No Binning Problem
- Disadvantages:
- High density of heat, good thermal design neccessary
- Good efficiency 150+ Lumen
- Optimized for round solutions
- EBV Offer: Bridgelux, Luminus, Ledil, Power Supplies, Heatsinks

EBV High-bay reference design

- Based on:
 - Bridgelux Vero29 COB
 - Ledil Stella-HB silicone lens
 - FrigoDynamics 2-phase coolers
 - Meanwell 160W Power Supply
- Thermal and optical verified in

EBV LIGHTLAB



Bridgelux Vero29

• One BXRC-40E10K0 (VERO29) is used in this demonstrator and is driven with 3300mA.

Vero29 (4000K)

The range of drive conditions used for the VERO29: BXRC-40E10K0-L-xx

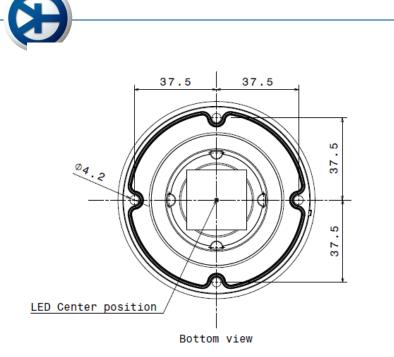
Current (mA)	Typ Voltage (V)	Electrical Power (W)	Thermal Power (W) *	Typical Flux@ Tj = 25ºC (Im)
2100	38.8	81.5	65.2	10270
2800	39.9	111.7	89.4	13270
3150	40.4	127.3	101.8	14740
4200	41.3	173.5	138.8	19070

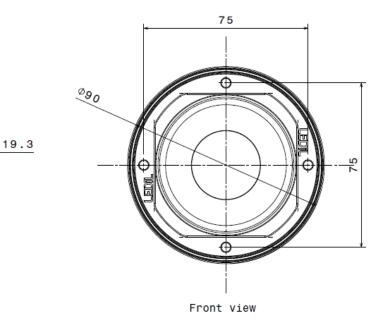
* Estimates 80% thermal conversion

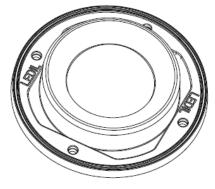
NOTE For VERO29, 50k Hours of Life: @ 2100mA (nom 1x) max Tc < 85C @ 3150mA (1.5x) max Tc < 80C

Ledil Stella-HB

- Silicone High bay lens
- Designed for Vero29
- Diameter 90mm, h=19.5mm
- 60° radial pattern
- Typ. efficiency 93%
- Excellent thermal properties
- Very good UV-withstanding
- IP-65 rating






Ledil Stella-HB

5.5

Right view

Frame material: PC black Tolerances if not otherwise shown According to DIN ISO 2768-1 Linear measures: Up to 30mm class F, otherwise class M. According to DIN ISO 2768-2 Form and position: class K Ledil Oy Salorankatu 10 FIN 24240 SALO Finland THIRD ANGLE PROJECTION: DRAWING TITLE Ð STELLA-HB datasheet This drawing is the property of LEDiL Oy. It may not be SIZE PART NUMBER reproduced, copied or communicated without a written agreement with LEDiL Oy." A3 FN14074 SCALE 1:1 WEIGHT SHEET 1 (g) **EBV**Elektronik 12

Lens Material: Optical grade LS

An Avnet Company I

FrigoDynamics HB HPK 270/360

- FrigoDynamics[®] HPK-Fin[™] 360 Cooler (available with Bridgelux holes)
- Highest performing passive coolers utilizing 2phase heat pipe technology.

FrigoDynamics HPK360

2-phase Hybrid Heat Exchanger for CoB LEDs ≤ 220W

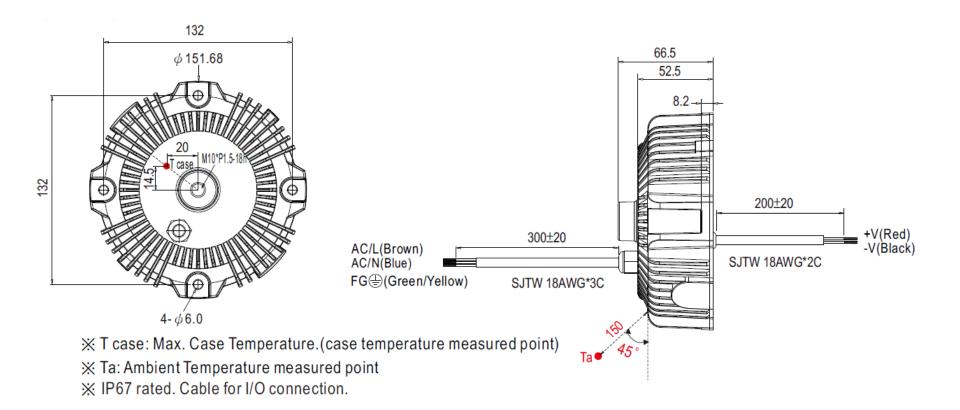
- Passive, no CO₂ emissions
- Light weight
- Compact
- Zero noise levels
- No lifetime issues
- No operating cost
- Works in any orientation
- Easy installation

HB HPK-Fin 360	Value	Conditions
Thermal Resistance (Tc)	0.28 K/W	Measured between LED Tc - ambient
Thermal Resistance (Hs)	0.20 K/W	Measured between LED mounting base and ambient
Design Power	220W (Tc-Ta < 50°C)	Electrical load
Surface finish	Black	Anodized
Weight	1.410g	Complete unit

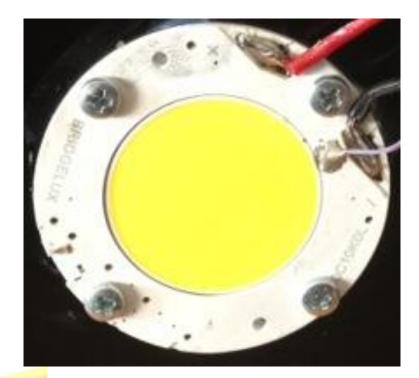
PSU Meanwell HPG-160-48

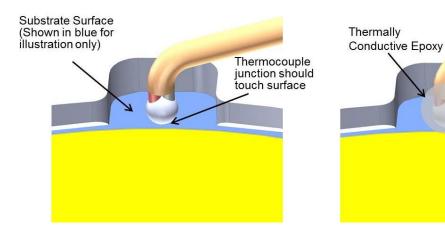
160W Single Output Switching PSU

- Universal AC input (up to 305VAC)
- Constant Current 3.3A, U_{max} = 48V
- Built-in active PFC function (93%)
- Protections: Short circuit /Over current /Over voltage /Over temperature
- IP67 / IP65 design for indoor or outdoor installations
- Suitable for dry / damp / wet locations
- 5 years warranty, T_c 70°C 40000hrs



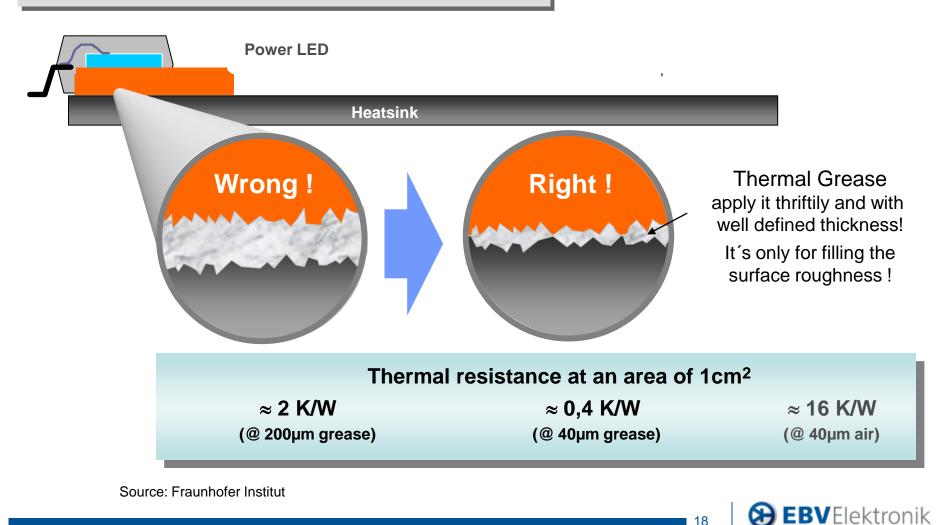
Mechanical Specification


PSU Meanwell HPG-160-48



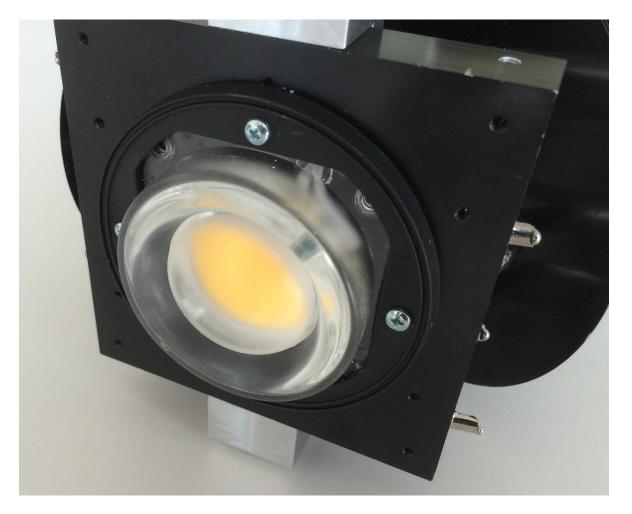
Thermocouple Tc Placement

 A thermocouple was positioned on the Tc point of the VERO29 and fixed using thermal epoxy



Contact Resistance

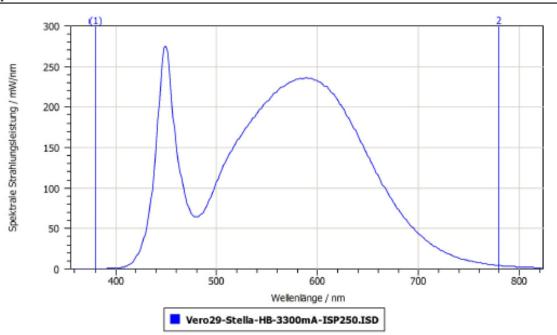
Thermal Grease as an Interface Material


High-bay HPK360 version

COB and Stella HB lens

Power Supply mounting

Mounting details

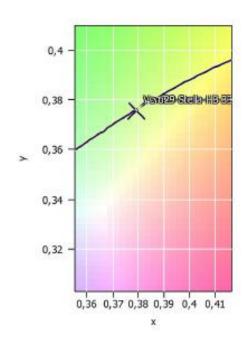


Measuring results (1)

Spectrum

Results

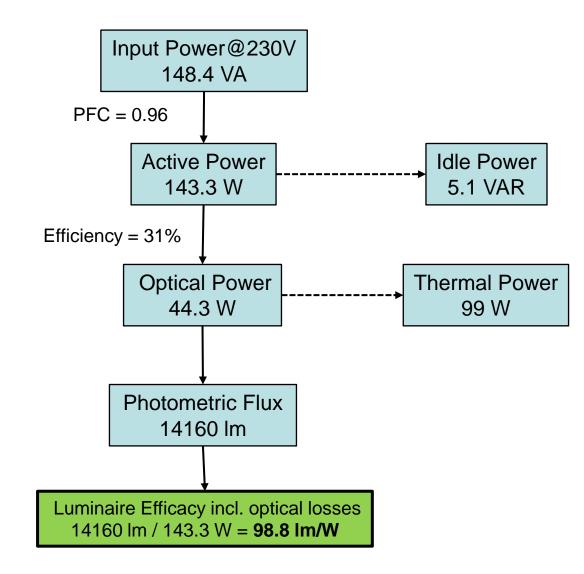
Photometric:	14,16 klm	Color Coordinates:
Radiometric:	44,33 W	x: 0,3790
Centroid WL:	567,37 nm	y: 0,3756
Peak WL:	449,15 nm	u: 0,2246
Dominant WL:	579,00 nm	v: 0,3339
Purity:	0,265	u': 0,2246
width50:	22,33 nm	v': 0,5009
CCT:	4032 K	
Planck distance	: -9,7E-005	



Measuring results (2)

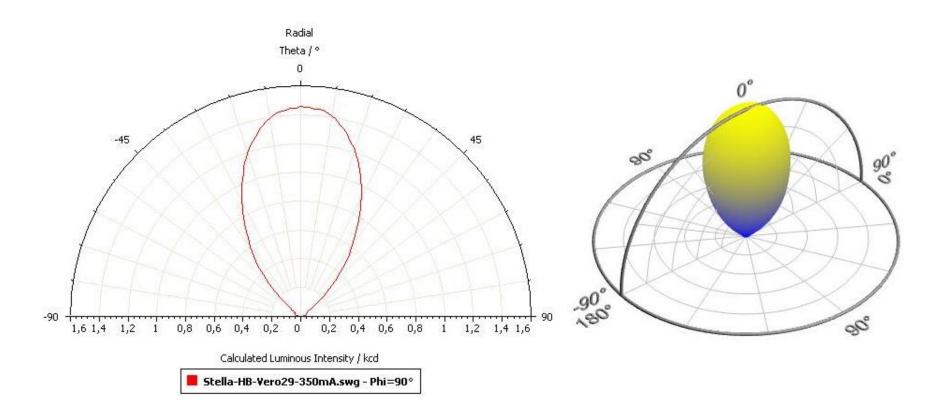
CRI

CRIa:	81,8		
CRI1:	80,1	CRI9:	14,7
CRI2:	87,0	CRI10:	68,5
CRI3:	91,5	CRI11:	78,1
CRI4:	80,6	CRI12:	59,0
CRI5:	80,1	CRI13:	81,4
CRI6:	87,0	CRI14:	95,2
CRI7:	91,5	CRI15:	75,5
CRI8:	80,6	CRI16:	75,2

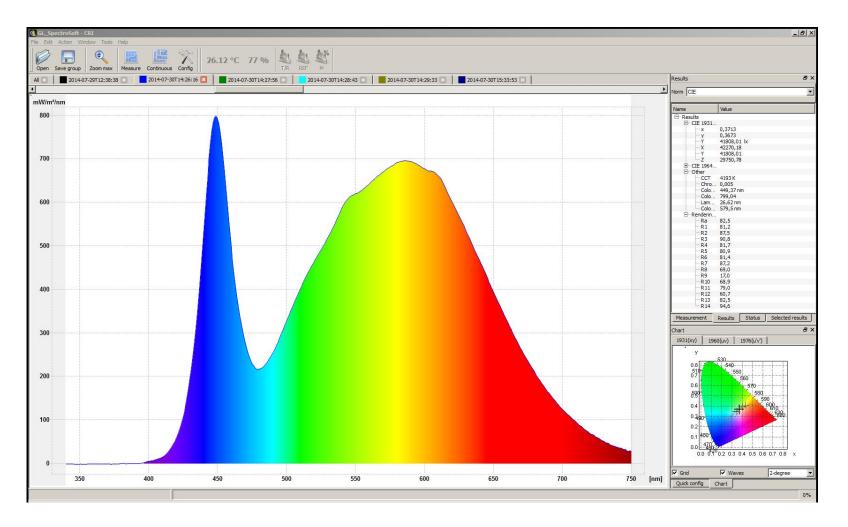

Gamut chart

CIE1931 2º

Efficiency Verification

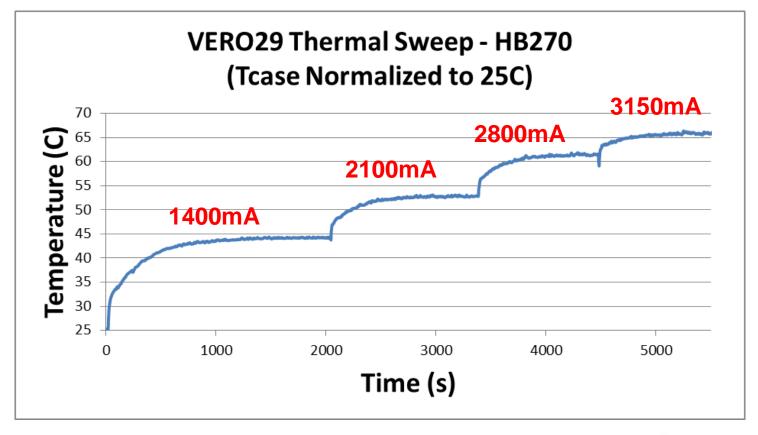


Optical Verification

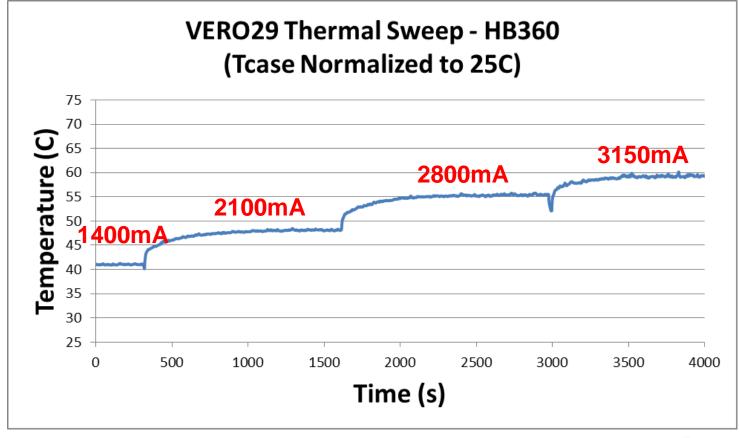

Vero29 and Ledil Stella-HB

Color Spectrum BXRC-40E10K0-L

Thermal verification


- Tests were conducted on:
 - FrigoDynamics HB270 and HB360 cooler
- Thermo coupler used
 - Type T thermocouples: 36 Gauge
- All coolers were shown to cool the VERO29 at nominal (3150mA) current at 25 C ambient

Thermal Measurements


Tc temperatures using the FrigoDynamics HB270 are shown in the thermal sweep graph

Thermal Measurements

Tc temperatures using the FrigoDynamics HB360 are shown in the thermal sweep graph

Conclusion

- At 3150mA and 25°C ambient, the FrigoDynamics HB270 can operate with a comfortable margin. The HB360 can operate up to 35°C ambient.
- At 4200mA (new spec:176W!) HB360 is mandatory.

Distribution is today. Tomorrow is EBV.