Silica Lighting

SILICA Lighting – Your Solution Partner.

Direct AC LED technology the future of LED lighting

LED applicaties

Laurent Petrus BDM Lighting FRANCE & BENELUX

SILICA PORTFOLIO

Optics

LED Products

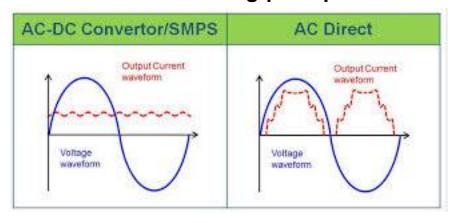
Power Supplies

An Avnet Company

Connectivity & Holders

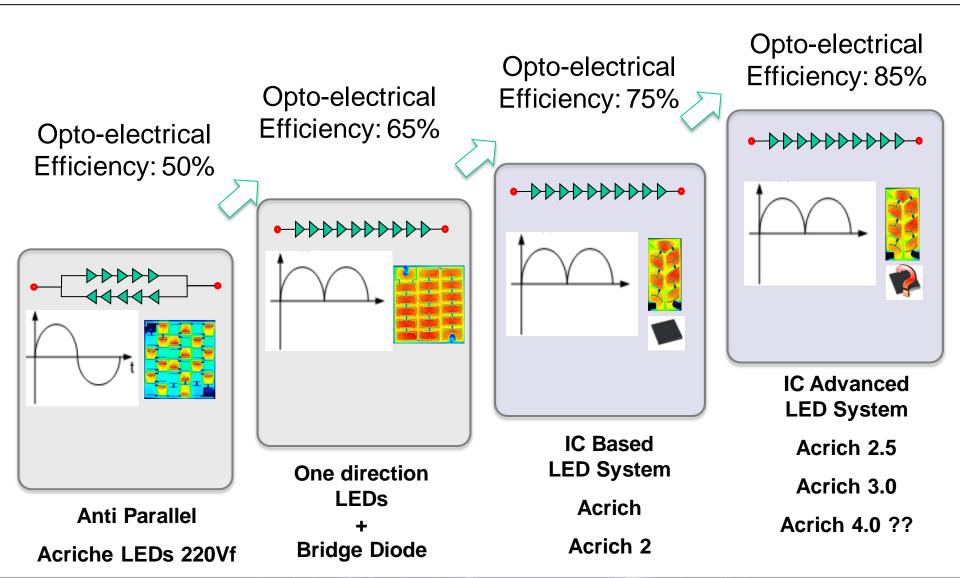
Thermal Mgmt.

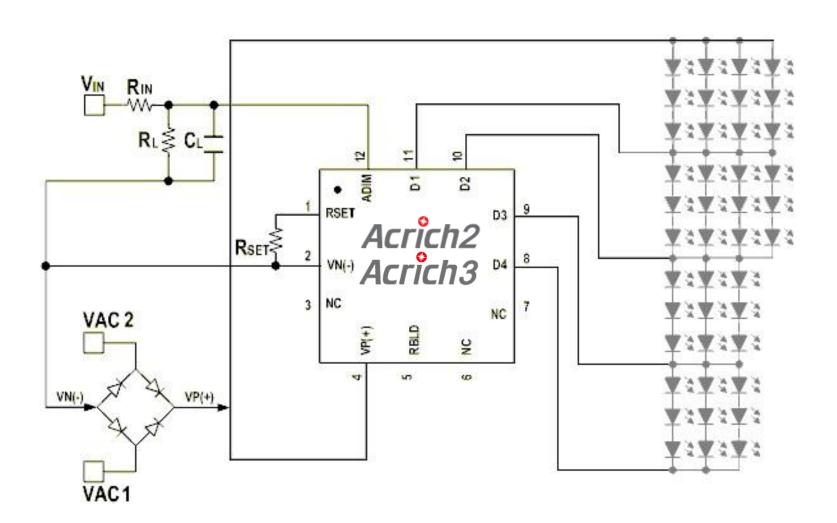
Agenda


- 1. Transforming the AC mains voltage in something that LEDs can use
- 2. History of SSC direct AC technology
- 3. Basic working principles of AC direct driven technology
- 4. Improvements that are bringing AC direct to mass market
- 5. Why AC direct technology will take the market?
- 6. What is happening in the market with the AC direct technology?
- 7. Examples of what you can do with AC direct technology

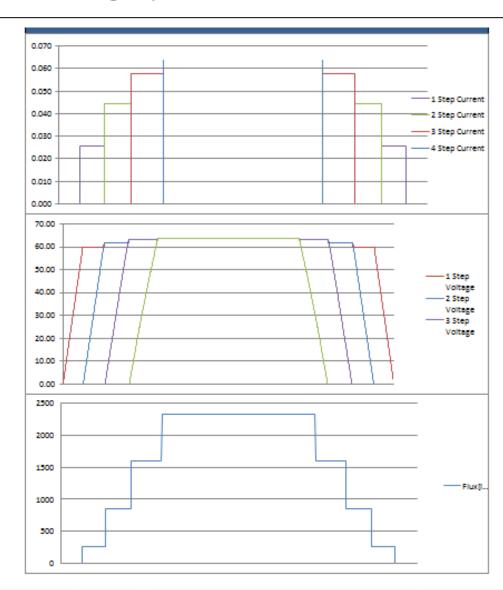
Transforming AC line voltage to drive LEDs

- Basic idea of SSC is to **change the way we drive LEDs** and get rid of using typical SMPS (switch mode power supplies)
- SSC proposal is to use a system that is based in a **sequential mode driver for LEDs** following the mains voltage sinusoidal wave




Basic working principle

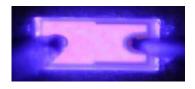
History of Seoul Semiconductor Acrich Technology



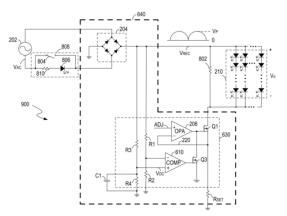
LEDs are divided to 4 Groups, and there are 5 different Stages of operation: Stage0 = LEDs OFF Stage1 = Group 1 Stage2 = Group 1+2 (see details below) **Stage3** = Group 1+2+3 **Stage4** = Group 1+2+3+4 AC line voltzae ON time = 9 msAcrich2 OFF time = 1 ms @50Hz, 230V AC) Stage Acrich2-5 6 7 AC input current Voltage (Black) and Current (Blue) of 2. Light output of the *Acrich2/2+/3* modules. the *Acrich2*+ module. Stages are visible

			_						
$\textbf{Stage} \rightarrow$	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	5 (=3)	6 (=2)	7 (=1)	8 (=0)
Group 1	OFF	ON	ON	ON	ON	ON	ON	ON	OFF
Group 2	OFF	OFF	ON	ON	ON	ON	ON	OFF	OFF
Group 3	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	OFF
Group 4	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF

				Modul	C Jillia	ator				
1) De	esign				Product N	lame				
No	Item	Unit	Value				PKG current			
1	Input Voltage	V	230							
2	Input Freq.	Hz	50							
3	1 Step LED array's	ea	series	3	parallel	3	17.08			
	2 Step LED array's	ea	series	3	parallel	3	16.80			
	3 Step LED array's	ea	series	3	parallel	3	15.82			
	4 Step LED array's	ea	series 3 parallel 3 13.71				.71			
4	R-set	Ω	5000			LED TOTAL	36	EA		
5	IC type	B type		\blacksquare						
6	PKG type	P/N SAV	P/N SAW8KG0B[5630 7Ce					A [21.1]	•	
2) N	Iodule Specification									
No	Item	Unit	Ty	Тур		Target				
1	Power Consumption	W	12.011							
2	Luminous Flux	lm	1380	1386.22						
3	Acrich Module Efficacy	lm/W	115.41							
4	Power Factor	PF	0.989							
5	Circuit Efficacy	%	84.72%		·					

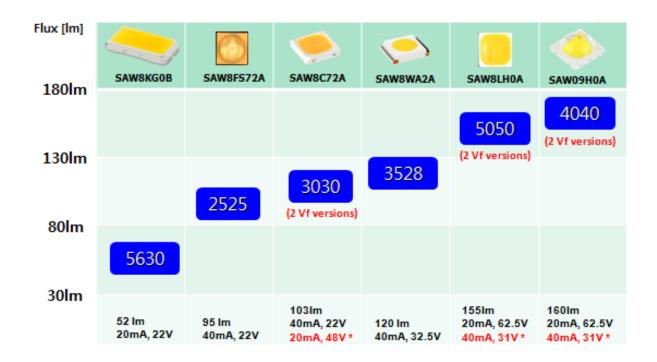

Key improvement factors to bring Acrich systems to mass market

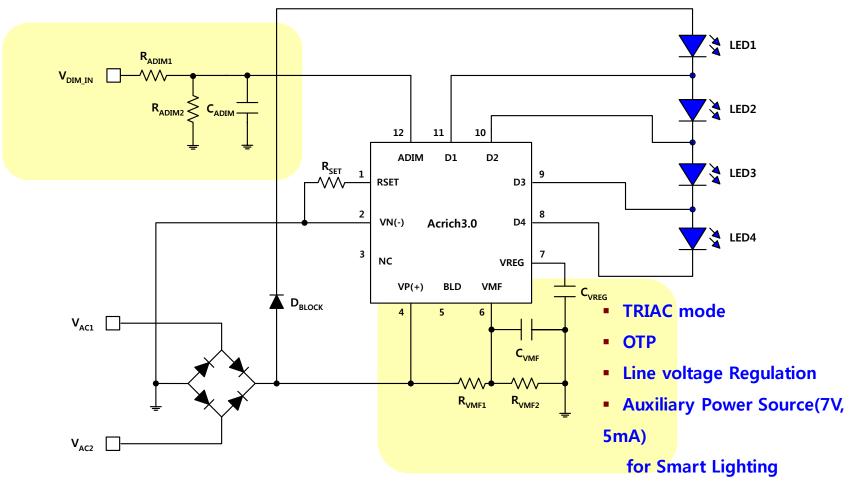
1. Development of the **M**ulti **J**unction **T**echnology LEDs Patented by SSC in 2007


MJT LED

Example with 21 cells x 3Vf = 63 Vf

Typical DC LED 1 cell x 3Vf = 3Vf

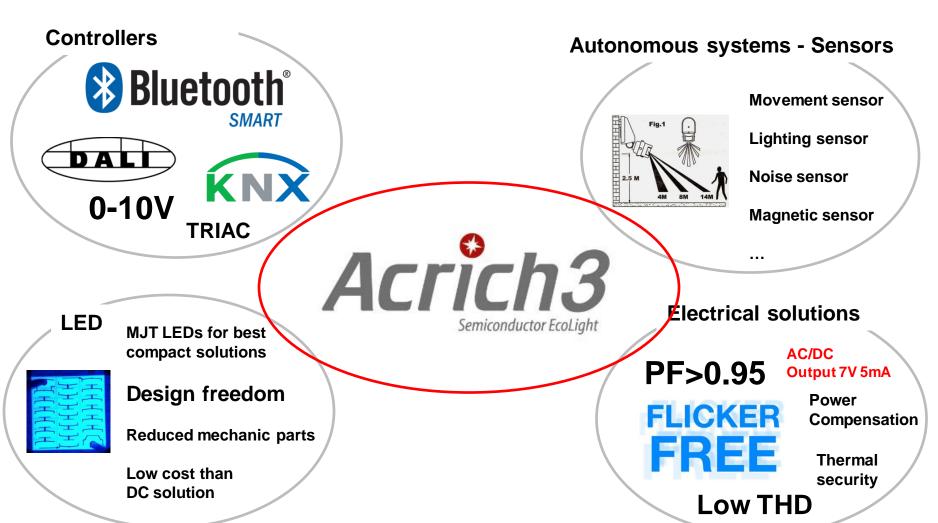

2. **External IC (ACRICH)** with sequential driving technology patented by SSC in 2010, in 2015 SSC launched the 3rd generation to the market, targeting the smart lighting future products.


Key improvement factors to bring Acrich systems to mass market

- 3. In 2015 the LED MJT5630 reached **160 lm/w efficiency** making highest efficiency in the market for a high voltage LED **with 22Vf and 20mA**
- 4. Extended Vf range and size of MJT LED solutions to be able to build any project

2. Benefits from Acrich Module

Acrich 3.0 Improved Function



ID Concer Plus Tookle ZinDoo

LED applicaties

WOENSDAG 2 december 2015

7. **Flexibility** of the Acrich 3.0 system

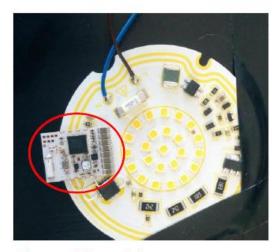


LED EVENT 2015

WOENSDAG 2 december 2015

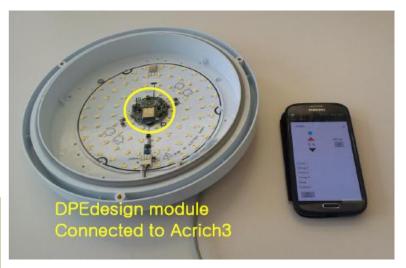
Key improvement factors to bring Acrich systems to mass market

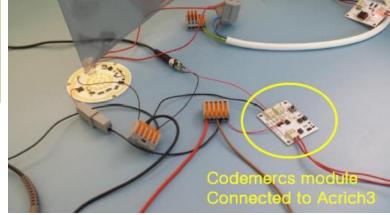
6. Longer lifetime of Acrich system compared with a SMPS driver


- By MTBF (Mean time between failure) and Temperature (°C)

Key improvement factors to bring Acrich systems to mass market

5. **Small factor and all integrated** modules with Acrich technology



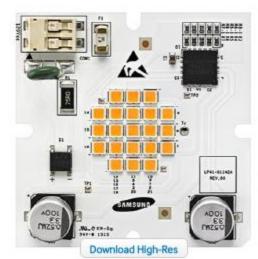

8. **Smart solutions** with Acrich 3.0 system (BLE, DALI, 0-10V, PWM, sensors...)

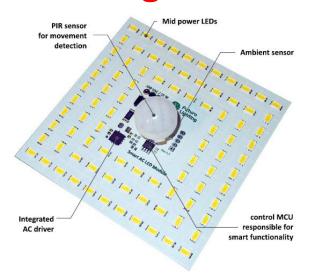
Casambi module
Connected to Acrich3

Why AC direct technology will take the market?

- 1. Small form factor compared with a SMPS for the same power
- 2. All on board system → LED + Driver + Controller → all in one PCB
- 3. Lifetime of the system is based on LED lifetime, the driver is no more the weakest part
- Fast time to market
- 5. Reduced system cost
 - Less mechanical parts
 - Easy and fastest assembly
 - Cheaper driving technology
- 6. Compliant with international regulations
- 7. Less components compared with a SMPS driver
- 8. Compatible with an external world of controllers and smart systems

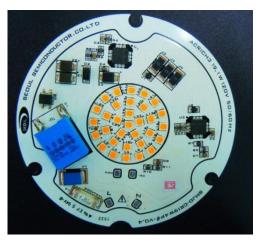
What is happening in the market with AC direct solutions?


 PrevaLED Core AC PRO
 Spot - Modules pour support mural


 PrevaLED Core AC
 Spot - Modules pour support mural

PrevaLED Flat AC Portfolio
 Spot-, Down- and Wallmount
 Light Engines and Modules

ALL big brands are moving into it !!


Examples of AC direct driven products

What can you do with direct AC technology?

Examples of AC direct driven products

What can you do with direct AC technology?

THANK YOU

Laurent Petrus
BDM Lighting France
laurent.petrus@silica.com
www.silicalighting.com

