

Tailored lighting with freeform optics

Youri Meuret

The LED: A revolutionary component

Other technologies that could revolutionize the lighting industry

Freeform optics

3D printing

Laser diodes

A freeform optical component ...

... is a lens or reflector of which the shape is fully determined by the optical functionality and which is not limited by any symmetry constraint

Imaging systems typically use rotational-symmetric lenses

The main reason lies in their fabrication process

Fabrication of a freeform lens in glass

Illumination systems typically <u>also</u> use rotational-symmetric lenses

The cost of a plastic freeform component is much more expensive that of a (rotational-) symmetric component

not than

Fabrication of a freeform mould with high-precision diamond machining

Commercial use of freeform optics (1)

Commercial use of freeform optics (2)

3 personal views

Reason 1 Optical design is far from trivial

	Rotational-symmetric optical components		Freeform optics
# necessary parameters to describe surface	1	2 - 10	20 - 1000
Design strategy	Optimization		 → Optimization (limited) → Direct design algorithms

Reason 1 Optical design is far from trivial

The crucial problem to solve is: Which ray transformation results in a continuous refractive or reflective surfaces?

But direct freeform design methods are maturing fast

Jun 29, 2015 SmallRect-FlatEntrancen153.2 LightTools 8 3.0 BETA

... and current fabrication technology allows to make these freeform components

Reason 2

Freeform optics = Fully customisable components, made with a mass production technology

Optical design = Determine the shape of the optical component to realise a luminaire with a specific radiation pattern.

<u>Lighting design</u> = Creative use of existing luminaires for unique lighting situations.

Reason 2

Freeform optics = Fully customisable components, made with a mass production technology

3D printing of high-quality optics is possible

freeform

Problem 3: To realise good light tailoring we need a point source (or high-luminance source)

This is the reason why laser diodes are being used in lighting applications

already

The headlights of the BMW i8 make use of blue laser diodes. This results in an optimal illumination pattern with a total efficiency that surpasses that of LED based headlights (source: BMW)

Practical limitation to go towards highluminance sources: Thermal quenching

- Phosphor efficiency = Quantum efficiency
 = # converted photons / # absorbed photons
- Heat is created in the phosphor
 - 1. Non-radiative losses because quantum efficiency ≠ 100 %
 - 2. Wavelength conversion Stokes shift losses
- Quantum yield becomes lower at higher temperatures
 = thermal quenching.
- Opto–thermal feedback
 - Higher temperature => lower quantum efficiency => even higher temperature => even lower quantum efficiency => ...
 - Possible thermal runaway and system breakdown.

Simulation example

Will these technologies revolutionize the lighting industry?

Freeform optics

3D printing

Laser diodes

LABORATORIUM VOOR LICHTTECHNOLOGIE

And what about glare?

Also here, smaller sources allow better light control.

