Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards
Stefano Sciolè
BDM I.M.S.
Henkel Electronic Materials
Agenda

1. Introduction
2. Motivation
3. Interconnect Reliability
4. Solder Joint Testing
5. Test Results
6. Conclusions
Introduction
Henkel at a glance

- 140 years old, German based, family owned company
- Close to 50,000 employees, over €18B in sales
- 3 divisions: Laundry & Home Care, Beauty Care and Adhesive Technologies
 - Specific division focused on solutions for Electronics applications

![Diagram of electronics components and materials used in LED lighting assemblies utilizing metal clad printed circuit boards.]
Motivation
Why using MCPCB in a LED assembly?

• LED performance is highly influenced by junction temperature
 • LED lifetime depends on junction temperature of the die
 • LED brightness depends on junction temperature of the die
 • LED Color shift depends on junction temperature of the die

• Various ways to achieve this:
 • FR4 with filled vias
 • FR4 with Cu-inlays
 • Ceramic boards
 • MCPCB

Proper thermal management is a must
Motivation

Interconnect Reliability

- Interconnect failure is an open circuit, not a short
- This causes all of the lights in series with the failed interconnect to go out.
- More significant than a single point source due to a short
- Warranties of 5 year or more are common in high reliability applications like street lighting, so the interconnect is crucial.
Interconnect Reliability
What happens

Different expansion/contraction with temperature swings

Stress Relief via Strain in:
- Solder Joint
- Dielectric

Ceramic submount
CTE ~ 5 ppm/K

PCB CTE (ppm/K)
- Stainless Steel ~ 12
- Copper ~ 16
- Aluminum ~ 25
Interconnect Reliability

The Result

Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards
Most interconnect reliability / fatigue failures occur where there is local plastic deformation. They are initiated at a void, discontinuity, or stress concentration and grow through plastic deformation.

Interconnect Reliability
Fatigue Relationships

• $\Delta D =$ the cyclic damage term. Generally: the lower the better

\[
\Delta D = \frac{F \cdot L_D \cdot \Delta \alpha \cdot \Delta T}{h}
\]

• F: correction factor $0.7 > F > 1.2$, generally
• L_D: distance to centerline or neutral plane
• $\Delta \alpha$: difference in CTE between package and substrate
• ΔT: maximum and minimum temperatures in thermal cycle
• H: solder joint thickness

Source: Engelmaier, Pb-free solder creep-fatigue reliability models updated and extended; Global SMT& Packaging, 9/2009. pg 36-37
Solder Joint Testing

Test parameters

- Copper and Aluminum based boards with different dielectric materials
- Circuit pattern as shown
- Finished with Electroless Nickel Immersion Gold
- 3 solders evaluated
 - Low Creep (Henkels 90iSC)
 - Standard (SAC 305)
 - Low melt (140C)
- Solder was stenciled using a 125 micron laser cut stencil with a 10% reduction in aperture size
- Populated with Luxeon Rebel
- Solder was reflowed as shown in air with standard reflow cycle
- Thermal Cycle the assembly
- Apply 3 V at the pads and look for light at cycling intervals
Solder Joint Testing
Test results

Comparison of Thermal Cycle on Solder Joint Reliability (aluminum)

-40 to 100°C, 15 min dwell
-40-125°C, 30 minute dwell
Solder Joint Testing
Test results

Comparison of MCPCB Substrate on Solder Joint Reliability

Fraction parts with light on vs. Thermal Cycles

- Red dots: Aluminum based MCPCB
- Gray dots: Copper based MCPCB
Solder Joint Testing

Test results

Comparison of Solder on Solder Joint Reliability

Fraction parts with light On

Thermal Cycles

- SAC 305
- 90iSC
- Low melt alloy
Solder Joint Testing
Test results

Comparison of MCPCB Dielectric Modulus on Solder Joint Reliability

Fraction parts with light On

Thermal Cycles

- Standard Modulus
- 1/2 standard modulus
- 1/4 standard modulus
Solder Joint Testing
Test results - Conclusions

• Solder joint reliability can be improved by:
 • Minimizing the temperature swing
 • Minimizing CTE Mismatch
 • Select Copper base v. Aluminum
 • Strain absorption of dielectric
 • Strain absorption of solder
Interconnect Reliability
What can Henkel do?

Relative Performance of Solder Joint Reliability of Thermal Clad Products

- ASL-1 SAC 305 aluminum 75
- IMS 1 90iSC aluminum 75
- IMS 2 SAC 305 aluminum 75
- IMS 1 SAC 305 aluminum 75
Conclusions

• Reliability of LED lighting solutions is key to continuing large scale adoption

• Interconnects can play a significant role in the reliability of LED assemblies in applications with thermal cycling requirements

• Solder joint reliability is determined by
 • Quality of solder joints
 • Solder types
 • Substrate materials
 • Part geometry
 • Thermal Cycles
Questions?
Thank you!

For more information contact:
Aad van der Spuij
aad.vanderspuij@henkel.com
Yvan Van Gorp
yvan.vangorp@henkel.com
www.henkel-adhesives.com/electronics