

ADDING AN 'O' TO LEDS

STATUS AND PERSPECTIVES OF ORGANIC LIGHT EMITTING DIODES

PAWEL E. MALINOWSKI, TUNGHUEI KE

LED EVENT 2017

Design en engineering trends voor LED-applicaties

BE WOENSDAG 29 NOVEMBER 2017 TECHNOPOLIS, MECHELEN

NL DONDERDAG 30 NOVEMBER 2017 CONGRESCENTRUM 1931 BRABANTHALLEN, DEN BOSCH

LIGHTING

FROM BULBS TO PANELS

LED EVENT

OLED LIGHTING: INSTALLATIONS

Sumitomo

OLED Works

unec

OSRAM

OLED Works

OLED LIGHTING: AUTOMOTIVE

LED EVENT 2017 BE 29-11-17 NI 30-11-17 BE 29-11-17 NL 30-11-17

Astron Fiamm

BMW M4

Audi

OLED LIGHTING: PANELS

IKEA

Acuity

aerelight

LG Chem

DISPLAYS

LCD VS. OLED

LED EVENT 2017 BE 29-11-17 NL 30-11-17

~15 MM PANEL VS. ~5 MM PANEL

AMOLED DISPLAYS TODAY

LED EVENT 2017 BE 29-11-17 NL 30-11-17

BOE

BOE

Samsung

Apple/LG

AMOLED DISPLAYS: SMARTPHONE

Samsung

Apple

Google

Samsung

AMOLED DISPLAYS:TV

LG

re OFED IA**

LG

THE "O"

ORGANIC LIGHT EMITTING DIODES

ULTRA-THIN LAYERS EMITTING LIGHT

Organic semiconductor:

- small molecule → vacuum evaporation
- polymer → solution processing

First small molecule OLED in 1987

Tang et al in Applied Physics Letters
First polymer OLED in 1990

Burroughes et al in Nature

MODERN ORGANIC LED STRUCTURE FOR SINGLE COLOR

MORE EFFICIENT MULTILAYER OLED STRUCTURE

Single color OLED:

5-10 layers, 10-15 materials, 100-200 nm thick

MODERN ORGANIC LED STRUCTURE FOR WHITE

LED EVENT 2017 BE 29-11-17 NL 30-11-17

EVEN MORE LAYERS FOR EFFICIENT WHITE

Improved OLED structure:

improved OLLD structure.	
Cathode Aluminum	
ETL: NET-18 + NDN-26	
HBL	
Green EML	
Yellow EML	
HTL	
P-doped layer: NPB + NDP-9	
Buffer layer	
N-layer, NET-18 + NDN-26)	
HBL	
Blue EML	
HTL	
HIL	
Anode: ITO	
Glass Substrate	

White OLED:

- → **stacking** different colors
 Separate layer for phosphorescent red
 and green and for fluorescent blue
- \rightarrow 8-15 layers, 20+ materials

tandem white OLED by Novaled

OLED VS. LED

LED EVENT 2017 BE 29-11-17 NL 30-11-17

DIFFERENTIATOR IS TRANSPARENCY AND FLEXIBILITY

OLED PERFORMANCE

LED EVENT 2017 BE 29-11-17 NL 30-11-17

BRIGHTNESS AND EFFICIENCY REQUIREMENTS

Brightness – depending on application:

• lighting: 1000-2000 cd/m2 (more – better)

• TV: 200 cd/m2

• viewfinder: 200-300 cd/m2

• smartphone: 500-800 cd/m2

• augmented reality: 3000-5000 cd/m2 (not sufficient lifetime at present)

head up display in cars: 10k-20k cd/m2 (not sufficient lifetime at present)

 Efficiency – depending on brightness, color point, lifetime, operation condition, barrier, integration process flow:

• red: 15-30 cd/A

• green: 50-80 cd/A

blue: 5-15 cd/A

OLED LIGHTING MARKET

LED EVENT 2017 BE 29-11-17 NL 30-11-17

LARGE GROWTH ESTIMATED – BUT THE ESTIMATES SHIFT

- 2014 IHS: market will grow tenfold by 2020 to reach \$26 million
- 2015 Nanomarkets: \$1 billion OLED lighting market in 2020
- 2015 ElectroniCast: to almost \$2.4 billion in 2020 and \$6.7 billion in 2023
- 2016 Yole Developpement: \$1.5 billion OLED lighting market in 2021
- 2016 UBI: growth from \$114 million to \$1.6 billion by 2020
- 2017 UBI: OLED lighting market will reach \$1.9 billion by 2021
- 2017 IDTechEx: OLED lighting market will reach \$2.5 billion in 2027

ımec

IMEC & HOLST CENTRE

IMEC: INDEPENDENT R&D HUB

OLED LIGHTING @ HOLST CENTRE

FLEXIBLE OLED ROADMAP

Making OLEDs flexible

Seamless integration & ease of assembly

Integration with driving chips

Dynamic colour changing

Adaptive Electronics

80% Transparency

Smart surfaces:

Combination with sensors, actuators & logic

Interaction

"Self"-powered

Soft

Active shape changing Real 3D Self-healing

Mass

customisation

2026

Form factor

Tunable colour & shape

S2S Thin film encapsulation

>20 years lifetime in products

Roll-to-roll barrier tool

Foldable

PHOTONICS²¹

Cuttable

Roll-to-roll tool for solution processed OLEDs

Upscaling

- < €100 /m²
- < €1 /100 lm > 10 million m²
- /yr > 20 years
- > 20 years lifetime

2006 2016

WIRELESS CONTACT OF FLEXIBLE OLED LIGHTING AND SIGNAGE

TRANSPARENT FLEXIBLE OLED SIGNAGE FILM IN AUTOMOTIVE DEMONSTRATOR

OLEDS WITH A SOFT FORM FACTOR

FLEXIBLE ROLL-TO-ROLL OLEDS

Holst Centre R2R moisture barrier film Fraunhofer FEP R2R ITO + R2R evaporated OLED 1.8 m x 30 cm (15 m made in each run)

AMOLED DISPLAYS @ HOLST CENTRE

FUTURE MIXED REALITY DISPLAYS

LED EVENT 2017 BE 29-11-17 NL 30-11-17

OLED DISPLAYS @ HOLST CENTRE

IMEC/HOLST AMOLED DISPLAYS

LED EVENT 2017 BE 29-11-17 NL 30-11-17

IGZO backplane OLED frontplane GENI substrate 165 process steps

Diagonal	4.0 inch
Resolution	QVGA, 320 ppi
Pixel Circuit	2TIC
OLED Type	Top-Emission
Display Driving	IC / in-panel
Substrate	PEN or PI

IMEC/HOLST DEMO AT TOUCH TAIWAN 2015

1250 PPI 2-COLOR PASSIVE OLED DISPLAY

LED EVENT BE 29-11-17 NL 30-11-17

TOUCH TAIWAN 2017 DEMO

Only 1st color

Only 2nd color

1st and 2nd color together

Zoom of the array

Display video

PASSIVE OLED DISPLAY DEMO

SUMMARY

THE "O" IN LEDS SUMMARY

- OLEDs are here to stay
 - market getting larger and healthier
 - improvements still needed in TRL and MRL

- OLED R&D platform at Holst Centre
 - from screening materials, through process development and prototyping to fab transfer
 - international collaborations from academia to industry

mec

embracing a better life

IMEC / HOLST ORGANIC PATTERNING TRACK RECORD

- P.E. Malinowski et al. "Photolithography as enabler of AMOLED displays beyond 1000 ppi", paper 44.1 (invited talk), SID Display Week, Los Angeles, 2017.
- T.H. Ke et al. "Effect of Integrated Protection Layer on Photolithographic Patterned OLED stack," 23rd International Display Workshops, IDW'16, Fukuoka, JP, 2016.
- P.E. Malinowski et al. "Multicolor 1250-ppi OLED Arrays Patterned by Photolithography", paper 74.3, SID Display Week, San Francisco, 2016.
- P.E. Malinowski et al. "Organic Photodetectors with Active Layer Patterned by Lithography", IEEE Sensors 2015, Busan, KR, 2015.
- T.H. Ke et al. "High aperture ratio organic light emitting diodes (OLED) pixels with 640 ppi resolution realized by CA i-line photolithography", 22nd International Display Workshops, IDW'15, Otsu, JP, 2015.
- P.E. Malinowski et al. "Patterning of multicolor OLEDs with ultra-high resolution by photolithography", paper 16.3, SID Display Week, San Jose, 2015.
- P. E. Malinowski et al. "Photolithographic patterning of organic photodetectors with a non-fluorinated photoresist system," Organic Electronics 15 (10), 2014
- P.E. Malinowski et al. "Patterning of multicolor OLEDs with ultra-high resolution by photolithography", 21st International Display Workshops, IDW'14, Niigata, JP, 2014 (Best Paper Award).

