

Company Overview

From design optics engineering to global manufacturer

Measurements & testing

With a lot of dedicated recourses & latest equipment

- Continuous UV testing
 - Always on UV chamber
- Thermal design & testing
 - Thermal camera and dedicated software
- Environmental and mechanical testing capabilities
 - Impact test IK01-10
 - Shear test 0-100N; fully automated testing
 - Temperature test -45 +280 constant or in cycles
 - Water immersion at 1m depth (IPX7)
 - Dust & Water Jet testing capabilities (IP55-66)
 - Screw torque resistance measurements
 - Video microscope for mechanical measurements and quality inspection
- Electrical measurements
 - Fully programmable Electrical Safety Tester GPT-9000 series: AC/DC Withstanding Voltage, Insulation Resistance, Ground Bond

Advanced materials

PMMA, PC & Silicone

- Continuous testing of new materials & coatings
- Mostly using Automotive grade PMMA
 - High resistance for outdoor UV aging
 - High transmittance 93%
- Poly carbonate (PC)
 - Better impact but lower UV resistance than with PMMA > UV coating may be needed
 - Possible for special requirements e.g. Fire rating and glow wire
- Optical silicone
 - Great UV and thermal resistance; sealable designs
 - Higher material cost but can reduce system cost as well as prolong a lifetime of a luminaire

		PMMA	PC	Silicone
Max	recomm. temp.*	80°C	110°C	150°C
ULR	П	90°C	115°C or higher	150°c
Tran	smittance	Тур.93%	Typ.88%	Typ.94%
UVr	resistance	(30years)	8	000
IK re	sistance	8	(up to IK10)	000

*LEDiL max recommended temperature taking light absorbtion and other environmental circumstancies into account

www.ledil.com

Color uniformity of light

LEDs and optics

- Good phosphor layer quality and design is the base of good quality light
- Especially cost and lm/W optimzied COB, midpower, and high power lenses are known to have color over angle and color consistancy issues
 - » OK for some applications, and with some optics
- Good CoA (color over angle) properties (typically cannot be find from the datasheets) give better results with most optics.
 - » Critical when high accuracy beam control is required like narrow spot and wall grazing beams.
- Bad CoA properties can become more visible especially with narrow spot light optics or be fixed with optical design or/and diffusion.
- Color mixing optical technologies can be used for CoA issues, tunable white and RGB.

Extrusions vs. Molded lens

Aestethics

- Lack of longitudinal control in extrusion optics often causes bright spots
- Microstructure can improve color uniformity issues

Extrusions vs. Molded lens

Beam control

 Longitudinal beam control can be limited causing glare (UGR), especially with extrusion opticts where longitudinal beam cannot be controlled.

Extrusion type

- No longitudinal control
- Highest UGR beam

Microsurface lens

- Partial longitudinal control
- Lower UGR beam

Lens linear array

- Full longitudinal control
- Lowest UGR beam

Reflector vs. Lens

Indoor lighting track light

- + Traditional design
- + Light weight

(more critical with big size)

- + Efficiency
- Limited optical control
- LED exposed directly

- + Modern design
- + Full optical control
- + Diffuses and protects the LED
- + Lower fixture height.

Color uniformity of light

3 different COBs

Chip location
Phosphor layer

Big spacing can make the beam pixelated Quality, consistancy, amount and technique

Lens for even more control

Ronda-WAS

RONDA-family

System for all architectural needs with 7 symm. And 3 assym. beams

HEKLA

Ø44 mm sockets & solderless connectors

- COMPATIBLE: support for many COBs and LEDiL optics
- ➤ **USABLE**: easy to use twist & lock mechanism
- > **DURABLE**: long lasting materials that can handle high temperatures without losing grip
- ➤ **INNOVATIVE**: Same system freedom to choose between solderless connector or mechanical socket

Solderless connector

CSP LEDs

Chip scale package

- Chip and phosphor only, "no package"
- Very small but comparable performance to packaged high power LEDs (Lmn, Vf)
- Wider beam angle, lower height
- > Optical compatibility?
 - » In some cases needs to be optimized

CSP

177

