

LED Flicker

where we are with test methods and standards?

LED EVENT 2017

Design en engineering trends voor LED-applicaties

BE WOENSDAG 29 NOVEMBER 2017
TECHNOPOLIS, MECHELEN

NL DONDERDAG 30 NOVEMBER 2017 CONGRESCENTRUM 1931 BRABANTHALLEN, DEN BOSCH

Is Flicker a problem?

LED EVENT 2017

Design en engineering trends voor LED-applicaties

BE WOENSDAG 29 NOVEMBER 2017 TECHNOPOLIS, MECHELEN

NL DONDERDAG 30 NOVEMBER 2017 CONGRESCENTRUM 1931 BRABANTHALLEN, DEN BOSCH

Why do LED's Flicker.....

-They do not
- Light output is based on amount of current going through the led
- Quick reaction of current changes
- No intrinsic flicker

Why do LED's Flicker

- It's the drivers job to provide a nice constant current
- Electric NOISE -> LED -> optical noise out

What can introduce noise

- Input voltage changes
- External noise on input voltage
- Phase angle instabilities from dimmer (when used)
- Driver instabilities
- Driver operation (intended)

How do we notice Flicker

 Flicker is best noticed by reflection less by direct view into the source

• appearance depends on numerous factors like:

Current Flicker metrics

- Simple
 - Percent Flicker
 - Flicker Index
- Complex
 - RPI LRC Assist, Mp, Flicker Perceptibility
 - IEC PST
 - SVM
 - FFT Analysis

Percent Flicker or % Modulation, or Modulation depth

- Easy to calculate
- Easy to understand
- Does not account for Wave shape and or Frequency
- Assumes periodic waveform

$$PF = \frac{A - B}{A + B} \times 100\%$$

Amplitude based calculation

Flicker index

- Easy to understand
- Assumes periodic waveform
- Frequency is not taken into account

$$FI = \frac{Area\ 1}{Area\ 1 + Area\ 2}$$

Surface Area based
 Calculation

Percent Flicker & Flicker Index

- for both no relation to human perception
- To be used to compare lamp which work under same conditions
- Frequency independence

Give for both

Same Percent Flicker & Same Flicker Index

What will work better

- Check the frequency components
- Determine frequency of interest
- Combine the results
- Compare this to a standard or baseline

Check the frequency components

- Most "real" waveforms can be mathematically represented by a combination of several simpler waveforms.
- The mathematical operation to determine these source waveforms is the Fast Fourier Transform (FFT)

Determine frequency of interest

- Remove (filter) frequencies that are irrelevant
 - For example, those above human perception
- Apply weighting factor to remaining frequencies

Combine the results

- Normalize and perform a summation algorithm over the resulting weighted frequencies
- Result is an integer value

Compare result against a standard

- Is lower or higher "better"?
- What's an acceptable range?
- Does it vary based on application?

Example: RPI LRC ASSIST metric (more USA)

- Accounts for wave shape and frequency
- Based off of (limited) human perception trials
- Focuses on perceptible flicker: <100Hz
- Complex measurement and analysis

Example: P_{st}, IEC flicker testing

- IEC 61000-4-15
 - Flickermeter Functional and design specifications
- IEC 61000-3-3
 - Limitation of voltage changes, fluctuations and flicker in public low voltage supply systems
- IEC TR 61547-1 (Adopts IEC 61000 for use with light)
- Complex originally developed to quantify power line quality

LED EVENT 2017 BE 29-11-17 NL 30-11-17

Example: Stroboscopic Visibility Measure (SVM)

- Measures primarily stroboscopic effects >80Hz (for moving objects), not necessarily static flicker
- Not yet well known or widely used in industry
- Based off of human perception trails

IEEE 1789-2015

- IEEEE recommended practices for Modulating Current in High-Brightness LEDs for mitigating Health Risks to Viewers
- Results drawn from multiple studies
- Results are somewhat controversial

Comparison of several TLA metric limits

Points of concern Analysis of an industry standard

WHAT Do you measure?	HOW Is it measured?	HOW Is it analyzed?	WHAT are the limits?
Light? Current? Voltage?	Sensor specs? Sensitivity? Frequency?	ASSIST? PST? Flicker Index? SVM	<1? >1? >1.6?

Know what you are doing

LED EVENT 2017 BE 29-11-17 NL 30-11-17

NEMA LSD-75 (Temporal Light Artefacts)

CIE proposed to ad

- A single value does not accurately capture all application-specific requirements
 - Some applications may be more sensitive to visible flicker (task-based work)
 - Some may need minimal stroboscopic flicker (video, motion based work)
- A dual-value metric is most suitable

CIE tech note

- Visual Aspects of Time-Modulated Lighting Systems
 - Definitions and Measurement Models

TECHNICAL NOTE

Visual Aspects of Time-Modulated Lighting Systems – Definitions and Measurement Models

CIE TN 006:2016		

Unintended consequence

- Adding stroboscopic measurements to flicker tests may cause otherwise "good" lamps to fail
- Poor testing procedures may cause invalid results, or incorrectly attribute flicker to the control or drive
- Improper use of flicker metrics may mandate high-levels of performance, even when unnecessary

LED EVENT 2017 BE 29-11-17 NL 30-11-17

Now we know, can we measure Flicker?

Suffice it to say that we currently expect

- * TLA
- * ASSIST Mp (for US Market)
- * Pst (short term flicker)
- * SVM (Stroboscopic Visibility Measure) to be endorsed as the most appropriate

these metrics will be measured with the BTS256-EF in combination with Software package

Odacon & Te Lintelo Systems invites you to see the demo at our booth

Exclusive distributor BeNeLux for:

TE LINTELO SYSTEMS BV photonics is our passion!

Te Lintelo Systems BV

Mecurion 28 A

6903 PZ Zevenaar

The Netherlands

1 +31 316 340804

www.tlsbv.nl • contact@tlsbv.nl

photonics is our passion!

References:

- LightingEurope Position Paper on Flicker and Stroboscopic Effect (Temporal Light Artefacts), September 2016 http://www.lightingeurope.org/news/article/position-paper-on-flicker-and-stroboscopiceffect
- CIE TN 006:2016, Visual Aspects of Time-Modulated Lighting Systems Definitions and Measurement Models, August 2016 http://files.cie.co.at/883 CIE TN 006-2016.pdf
- IEC/TR 61547-1:2015, Equipment for general lighting purposes. EMC immunity requirements. Part 1: An objective voltage fluctuation immunity test method, April 2015 https://www.iec-normen.de/221721/iec-tr-61547-1-2015-04-ed-1-0-englisch.html
- IEC 61000-3-3, Electromagnetic compatibility (EMC) Part 3-3: Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection, Edition 3.0, Mai 2013
- IEC 61000-4-15, Electromagnetic Compatibility (EMC) Part 4-15: Testing and Measurement Techniques Flickermeter Functional and Design Specifications, Edition 2.0, Mai 2010
- IEEE Std 1789-2015, IEEE Recommended Practices of Modulating Current in High Brightness LEDs for Mitigating Health Risks to Viewers: http://standards.ieee.org/findstds/standard/1789-2015.html
- NEMA Position Paper, Temporal Light Artifacts (Flicker and Stroboscopic Effects), 2015-06-15: https://www.nema.org/news/Pages/NEMA-Lighting-Systems-Division-Publishes-Position-Paper-on-Temporal-Light-Artifacts.aspx
- NEMA Lighting Systems Division Document, Temporal Light Artifacts: Test Methods and Guidance for Acceptance Criteria, Publication in preparation
- Alliance for Solid-State Illumination Systems and Technologies (ASSIST), Flicker Parameters for Reducing Stroboscopic Effects from Solid-state Lighting Systems, Volume 1, Issue 1, Mai 2012: http://www.lrc.rpi.edu/programs/solidstate/assist/pdf/AR-Flicker.pdf
- EC SCENIHR (Scientific Committee on Emerging and Newly Identi-fied Health Risks), Health Effects of Artificial Light, 19 March 2012: http://ec.europa.eu/health/scientific_committees/consultations/public_consultations/scenihr_consultation_14_en.htm
- F. Deter, P. Beeckman, N. Wittig, Spannungsschwankungen und Licht-Flicker nach dem Ausstieg aus der Glühlampentechnologie, EMV 2016 Conference
- G. Perz et al, Modeling the visibility of the stroboscopic effect occurring in temporally modulated light systems, Lighting Research and Technology published online 13 May 2014: http://lrt.sagepub.com/cgi/reprint/1477153514534945v1.pdf?ijkey=GcQ3UW7Qz2UwqtM&keytype=ref
- D. H. Kelly, Visual responses to time-dependent stimuli, I. Amplitude sensitivity measurements, Journal of the Optical Society of America 51, 1961

