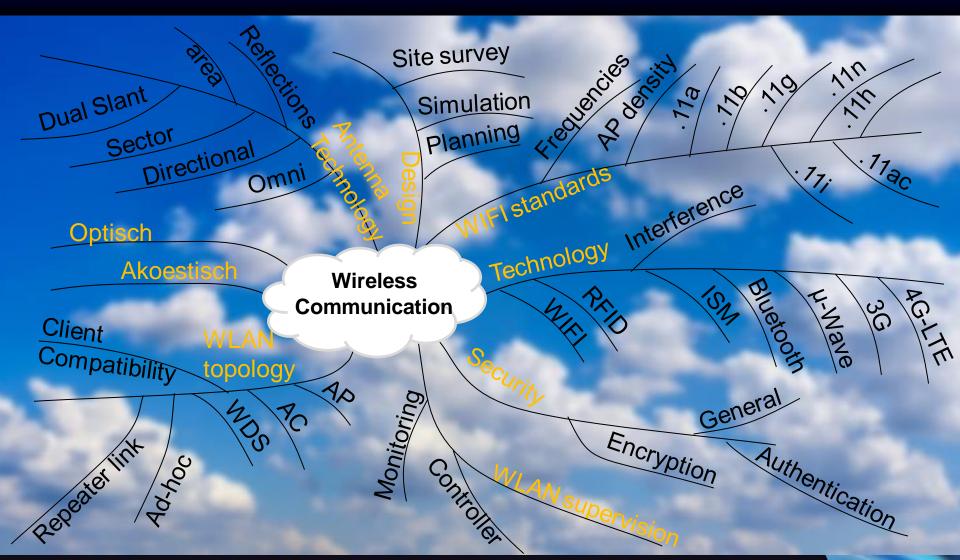
WIRELESS OR WIREMORE?

Theory and practice for Industrial WLAN installations

MULTIMEDIA

Fred Weggelaar -Network engineer, Consultant & Trainer

Hirschmann Multimedia BV dep.: Hirschmann Network Solutions


1986- 1999: RF & CATV development 1999- 2015: Industrial Networks Engineering, Support & Consultancy

Industrial Ethernet

Wireless or Wiremore?

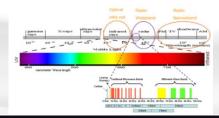
THE WIRELESS COMMUNICATION MAP

Industrial Ethernet

Wireless or Wiremore?

ACCOUSTIC COMMUNICATION IS NO OPTION

- → Acoustic is also wireless,
 - → but no option for modern industrial communication
 - Please be aware: the air is a shared medium
- → Electromagnetic waves are a better solution.
 - If we can reach and connect only the communication participants... Comparable with audience in a stadium.
 - Please be aware: the air (ether) is a shared medium



- → The air is full of EM signals
 - → Fortunately we can't see most of them...

→ But if we could...

Industrial Ethernet

Wireless or Wiremore?

THE WIRELESS CHALLENGE

No discussion:

A wired connection is most reliable

→ but:

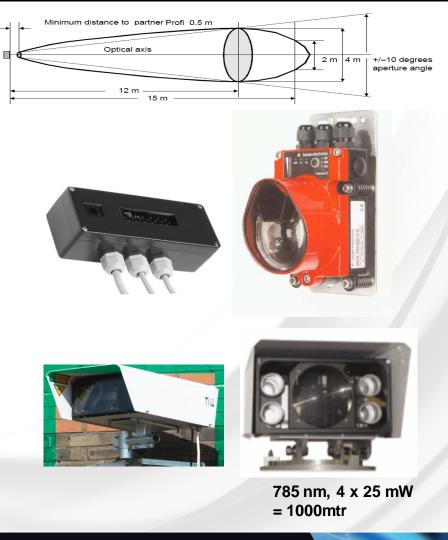
- Now a growing number of applications need or like to have wireless
- → WirelessTarget:
 - Optimal application connectivity

→ but:

- Wireless link is least reliable chain, so WLAN optimalization is the challenge!
- Obvious solution:
 - High density of AP's and antennas, resulting in a lot of cabling

Wire more for Wireless is sometimes the result

Industrial Ethernet



OPTICAL WIRELESS

- → Only for line of sight applications
- → Insensible for radio interference
- Wavelength in Infra red spectrum
- → LED systems
 - Due to optical divergence, applicable only for short distances and low data rate (Profibus at several meters)

Lasersystems

 Depending on transmit power, applicable for several kilometers with high data rate (GigabitEthernet at several kilometers)

Industrial Ethernet

RF WIRELESS (BROADBAND)

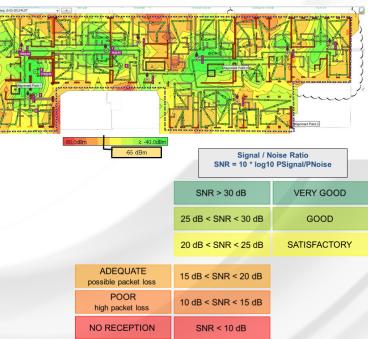
- Operates with line of sight and through obstacles
- Relative insensible for weather conditions
- → Licenced and Licence free frequencies
- Be aware of the WLAN overhead data
 - > Gross data is almost double the net data
- Point-to-(Multi)Point connections
 - Directional antennas create a long traject
 (1 → 1000 Mbps at 15 → 1 kilometers)
- → Area coverage
 - Communication is possible. Depending on antenna type and -position, TX-power, obstacles and process environment
 (1 tot 300 Mbps at continuotors up to soveral
 - (1 tot 300 Mbps at centimeters up to several hundreds of meters)

Industrial Ethernet

WIRELESS... GETTING STARTED

Approach:

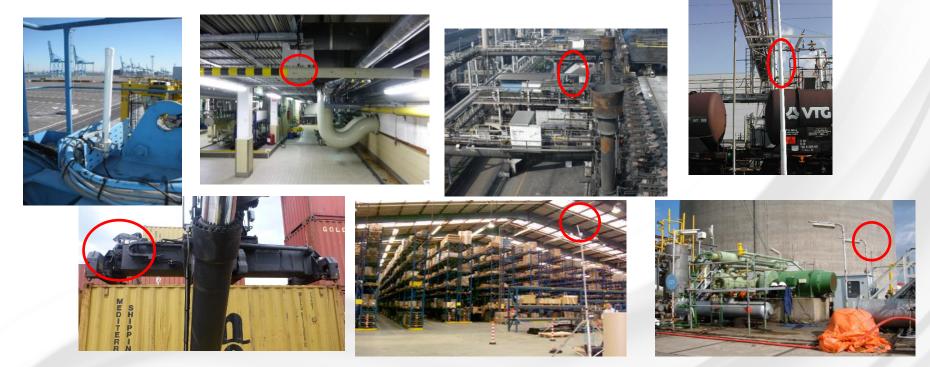
- → By trial and error...Just buy and try
- Or by engineering:
- Determine the level of engineering
 - > Simulation and if possible: Passive Site Survey or Active Site Survey
- Determine the technology (application requirements for data capacity)
 - What kind of clients are to be used?
 - Origin of data: SCADA, (non) critical control data, RIO, Video, Audio, combinations
 - > Prefer the technology
- Determine the topology and type of connection
 - PtP, WDS, Area coverage, Roaming clients
 - > Prefer the topology and antenna types
- Determine the environmental conditions
 - > Select the technology, antenna types and accessories
- Determine the required configuration and security level
 - > Implement the required configuration


Industrial Ethernet

STEP 1a: SIMULATION

- → Software tools to create 2D or 3D simulations:
 - > BAT Planner (by Belden-Hirschmann[™])
 - > Ekahau Site Survey (by Ekahau)
 - > AirMagnet (by Fluke Networks)
 - » RF3D (by Psiber)
 - > Visiwave (by AZO Technologies, Inc)
 - Acrylic Heatmaps (by Tarlogic Security)
 - > Tamograph (by Tamos)
 - Fortiplanner (by Fortinet)
 - > LAN Planner (by Motorola)
 - > FLWST (by Phoenix Contact)
 - Sinema (by Siemens)
- Specially observe:
 - Signal strength
 - Signal to Noise Ratio (SNR)

Industrial Ethernet



STEP 1b: SITE SURVEY - GOAL 1

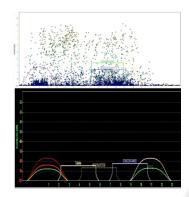
→ Goal 1: Determine optimal antenna locations

- > Advice for hardware and antenna locations
- > Observing the structural condition
- > Often a dilemma between RF-Optimal and realizable

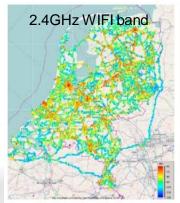
Heat, Wind, Moisture, Reflections, Moving Clients, Aggressive H₂S gas, Rocks, Flames, Vibrations

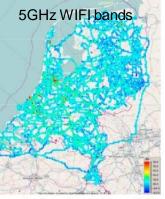
Industrial Ethernet

STEP 1b: SITE SURVEY – GOAL 2


→ Goal 2: Advice for frequency use

- Even if there is nothing to see


- There is a lot to measure

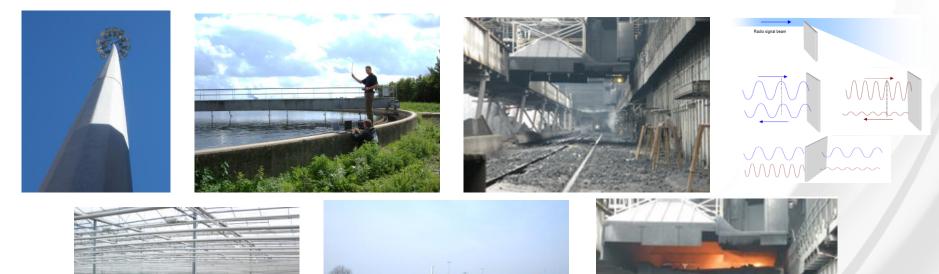

- Like already occupied channels

- → Check channel availability
 - > 2.4 GHz is most used ISM band.. Jokingly called "The Toy Band"
 - > 5 GHz has more capacity,

but is not integrated in all industrial equipment yet

Figuur 1: Mobiele veldsterkte metingen van de gehele 2,4 GHz WiFi ban Het is een hoge dichtheid in het aantal uitzendingen.

Figuur 2: Mobiele veldsterkte metingen van de gehele 5 GHz WiFi band. Hier is een veel lagere dichtheid in het aantal uitzendingen te zien, die daarbij voornamelijk in grote steden plaatsvinden.



Industrial Ethernet

STEP 1b: SITE SURVEY – GOAL 3

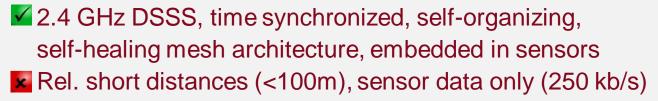
→ Goal 3: Understanding the operational situation on site

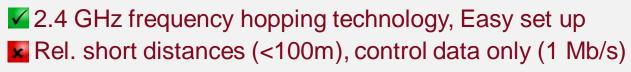
- > Environmental conditions and structures (deflection, reflection, attenuation)
- > Propagation changes depending on process steps

Heat, Wind, Moisture, Reflections, Moving Clients, Aggressive H₂S gas, Rocks, Flames, Vibrations

Industrial Ethernet

Wireless or Wiremore?

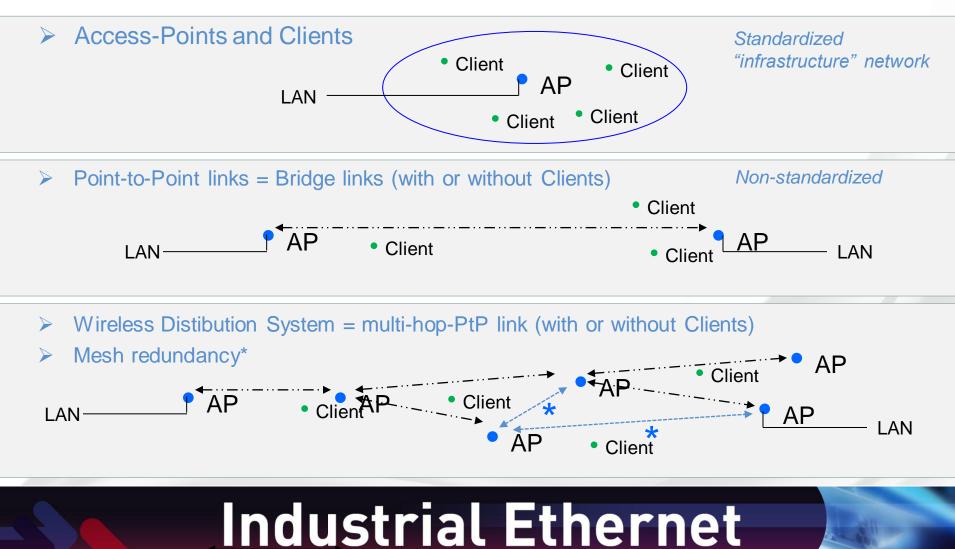

STEP 2: TECHNOLOGY SELECTION


Passive clients, low cost, quick connection
 Low data rate, client identification only

2.4 GHz & 5 GHz standards, Scalable, High capacity, Roaming Clients, Video suitable, Development of "state of the art standards"

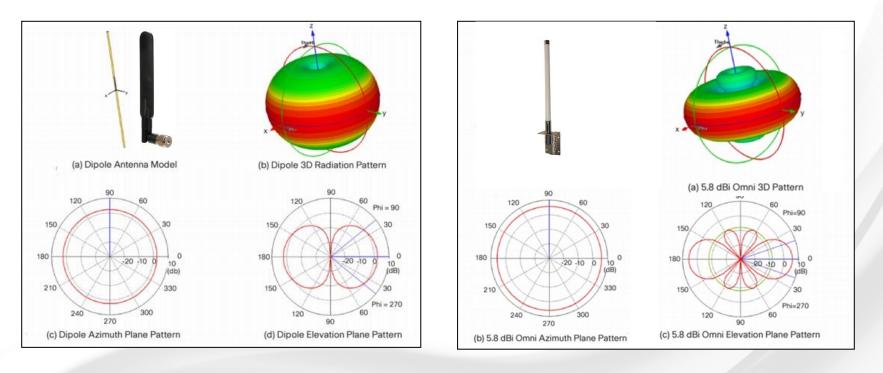
BYOD & RADAR disturbance, Rogue AP's (Man i.t. Middle)

60 – 86 GHz applications, PtP Privacy, very high capacity,
 Line of sight only, static locations



Industrial Ethernet

Wireless or Wiremore?


STEP 3: TOPOLOGY SELECTION

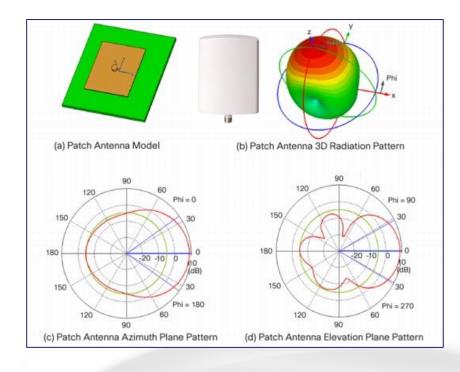
> Depending on the application, one of the following topologies will be applicable

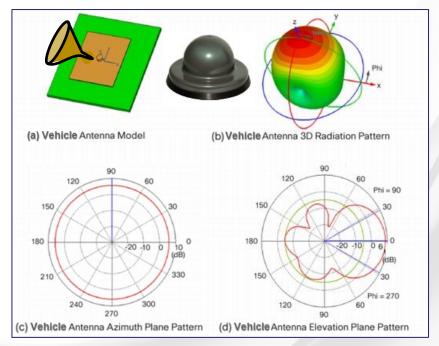
STEP 3: ANTENNA RADIATION MODEL SELECTION (1)

- > Depending on the application, one of the following radiation models will be applicable
 - > Omni directional antennas

G = 2 dBi

G = 6 dBi


Industrial Ethernet


15

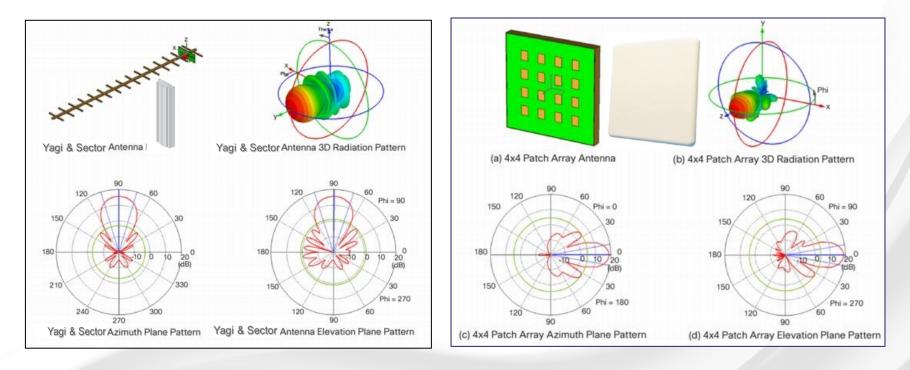
Wireless or Wiremore?

STEP 3: ANTENNA RADIATION MODEL SELECTION (2)

> Directional (patch) antennas & vehicle antennas

G = 9 dBi

G = 6 dBi


Industrial Ethernet

16

Wireless or Wiremore?

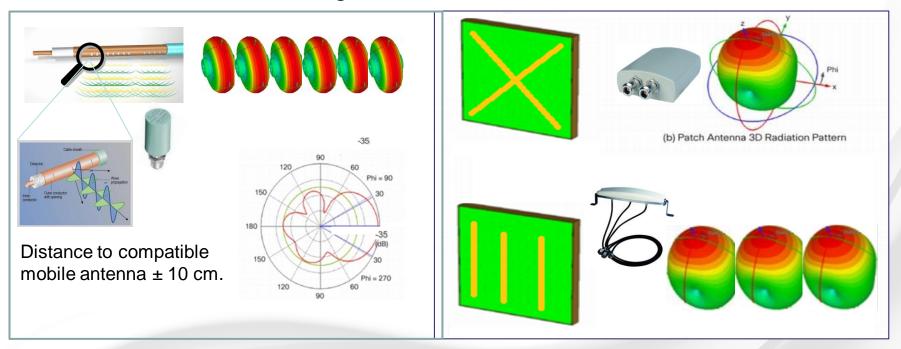
STEP 3: ANTENNA RADIATION MODEL SELECTION (3)

> Sector antennas

G = 16 dBi

G = 20 dBi

Industrial Ethernet


Wireless or Wiremore?

STEP 3: ANTENNA RADIATION MODEL SELECTION (4)

Special antennas

Radiating Cable

Dual Slant & MIMO antennas

G = -35 dBi

G = depending on model

Industrial Ethernet

18

Wireless or Wiremore?

STEP 4: SELECTING THE RIGHT EQUIPMENT

- Take notice of the environmental conditions
 - > An Antenna is just some (printed) wire in a box, so why the expensives?
 - > My Access Point is a A-brand, so why the expensives?

- Reliable Industrial applications deserve well protected devices
 - > Water, aggressive gasses, flames, high temps, temp shocks, wind, salt, surges, etc..

Industrial Ethernet

STEP 4: SELECTING THE RIGHT ACCESSORIES

- → Take notice of the possibilities of installing equipment
 - > There are many coax cables.... Choose the right one

Inside cabinets (1-3 m.)


```
Outside cabinets (2 - 20 m.)
```

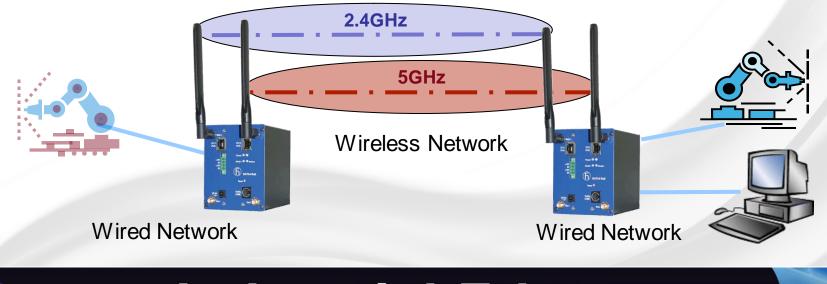
- Industrial applications deserve well protected devices
 - Water, aggressive gasses, flames, high temps, temp shocks, wind, salt, surges, etc.

Surge Protectors

Cabinets for protection against: temp extremes, chemicals, water, etc

Industrial Ethernet

Wireless or Wiremore?

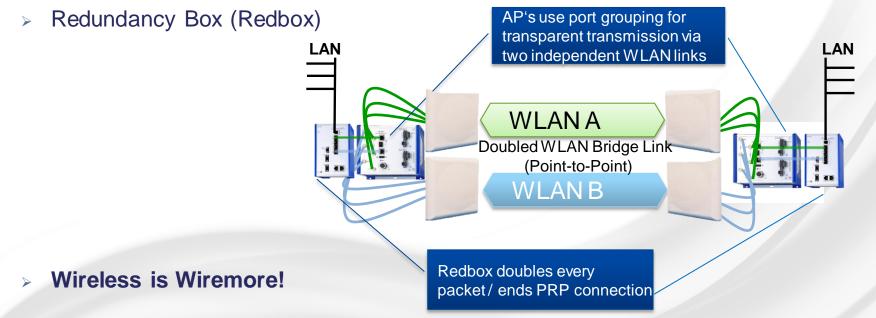

STEP 5: IMPLEMENT THE OPTIMAL CONFIGURATION

- Autonomous or Controller based WLAN?
 - > Depending on the number of AP's and manageability requirements
- → Single SSID, Multiple SSID, VLAN over WLAN?
 - > Depending on the number of applications and demand for data separation
 - > Depending on specs and applications
- Access Point or Access Client mode?
 - > AP: Infrastructure mode, Ad-hoc mode, Point-to-(Multi)Point,
 - > AC: Roaming parameters
- → RF-path Redundancy?
 - > Spanning Tree / PRP
- → Security
 - Intrusion protection, 802.11i (WPA2/PSK) or 802.1x (server) Authentication, Encryption
 - > White listing, Black listing, MAC listing, interstandard compatibility
 - > Firewalling

Industrial Ethernet

RF-REDUNDANCY.. TRADITIONAL PROTOCOL

- → Increased reliability: one RF path in stand by
 - > Two radios per device
 - > Redundancy based on LAN-protocol STP
 - > Recovery time in seconds
 - > Transparent for Industrial Ethernet protocols
 - > Two simultaneous WLAN links

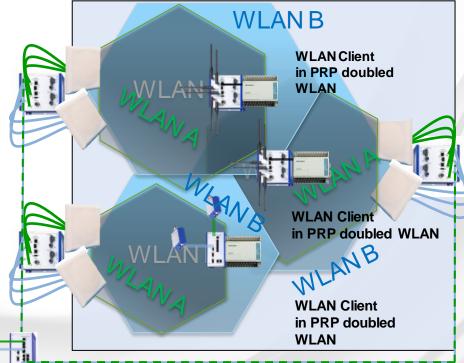


Industrial Ethernet

Wireless or Wiremore?

RF-REDUNDANCY.. PRP IN POINT-TO-POINT-CONNECTIONS

- → Increased reliability: Two active RF paths
 - > Two radios per device
 - Redundancy based on IEC62439-3 PRP
 - > Recovery time 0 seconds
 - > Transparent for Industrial Ethernet protocols
 - > Two simultaneous WLAN links containing identical data: Redbox is filtering device


Industrial Ethernet

Wireless or Wiremore?

RF-REDIMDANCY.. PRP IN SMART ROAMING INFRASTRUCTURE NETWORKS

- → Increased reliability
 - > Two radios per device (AP and AC)
 - Redundancy based on IEC62439-3 PRP
 - > Transparent for Industrial Ethernet protocols
 - > Recovery time 0 seconds
 - > Two simultaneous WLAN links containing identical data: Redbox is filtering device
 - > Client radios roam on different moments
 - Connection guaranteed by at least one WLAN

Wireless is wiremore!

LAN A + LAN B separated by VLAN on same cable

Industrial Ethernet

RedBox

LAN

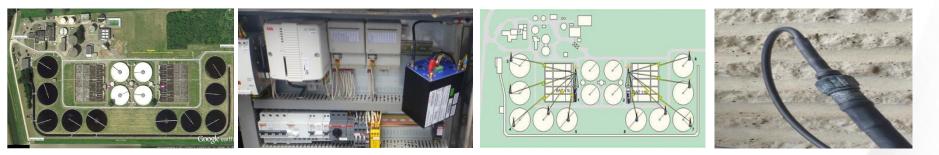
Wireless or Wiremore?

PITFALLS FOR NON-RF TECHNICIANS

Environmental conditions: Heat, Wind, Moisture, Rocks, Flames, Aggressive H₂S gas, Vibrations, taping

RF knowledge:

Reflections, screening, Grounding, Bending radius, Propagation, Polarization Antenna pattern,



Industrial Ethernet

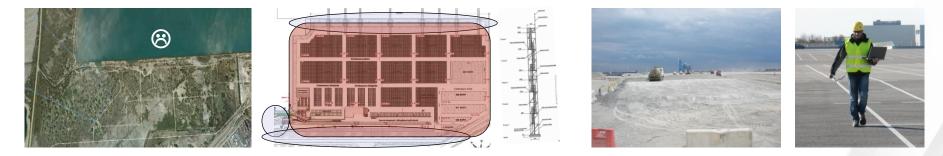
RESULT EXAMPLE OF ENGINEERING APPROACH (1)

→ Project: waste water installation 2.4 to 5 GHz migration

→ View in Google Earth → Define required applications and connections → site survey

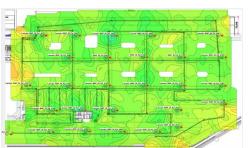
→ Simulation heat map → As-built heatmap → Result: stable operation

Projectpartners:



Industrial Ethernet

Wireless or Wiremore?


RESULT EXAMPLE OF ENGINEERING APPROACH (2)

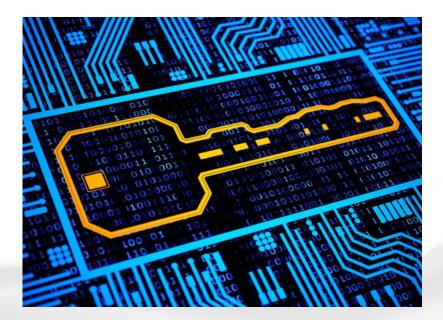
→ Project: New Container Terminal 2.4 & 5 GHz

 \rightarrow View in Google Earth \rightarrow Define required connections \rightarrow Site Surveys at several stages

Hirschmann Multimedia FH-IE201

 \rightarrow Simulation heat map \rightarrow As-built heatmap \rightarrow Result: Interruption free operation

Projectpartners:


Industrial Ethernet

MULTIMEDIA

Please visit us at the exhibition floor

networksolutions@hirschmann.nl

Industrial Ethernet

28

Wireless or Wiremore?