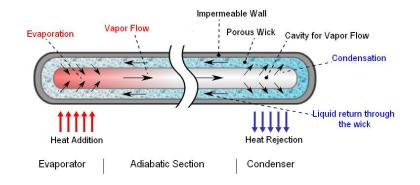
Thermal management solutions with heat pipes

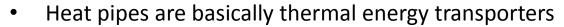
Andrea Sce

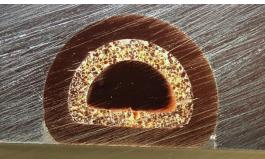
20 juni 2017 1931 Congrescentrum Den Bosch ECECTRONICS

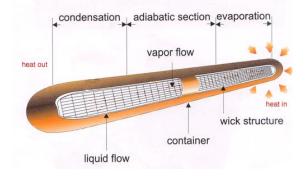
Corporate Overview

- World's Leader in Thermal Management Solutions
- Product Manufacturing Engineering Services Technology Development
- 3000+ Global Employees including 300+ engineers
- 111000 m² of manufacturing space
- ISO 9001:2008

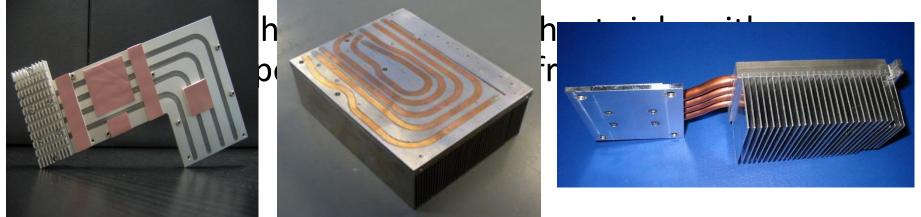



Aavid Locations and "Family"




Heat Pipes Working Mechanism

They move heat from a warm location to a cold location



ELECTRONICS

Why to Use Heat Pipes?

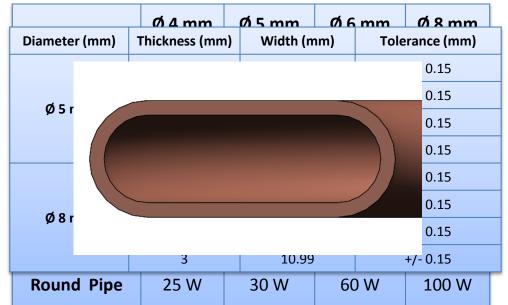
- Overcome limitation of air cooling solutions
- Can be integrated in existing applications

ELECTRONICS

Heat Pipes Power Capacity

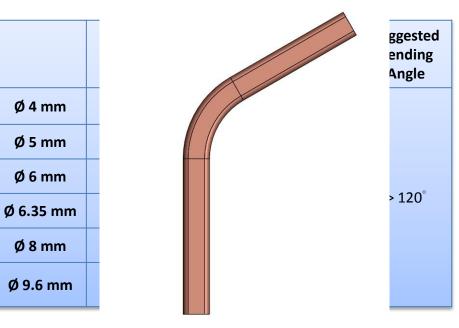
- Mainly related to diameter
- Reduced by flattening or bending
- Affected by orientation
- HP efficiency is decreasing with length
 - Maximum, minimum

20 juni 2017


Diameter (mm)	Maximum Power (W)*
3	12
4	25
5	30
6	60
8	100
9.5	120

* L = 150 mm, vertical orientation against gravity

Flattening


- In case of geometrical constraints
 - Base thickness
- Power capacity is reduced
- Values given at 150 mm, vertical orientation against gravity

ELECTRONICS


Bending

- In case of geometrical constraints
 - Obstacles, lay-out of application
- Power capacity is reduced
 - Consider a reduction of 5-10% for every bend

Orientation

- In an ideal World vapor should go up and liquid down...
- In reality...

Estimated for ϕ 6mm, 150 mm long straight sintered heat pipe at 50 $^{\circ}{\rm C}$

Heat Pipes Selection

 Based on boundary and operating conditions

Table 1. Typical Operating Characteristics of Heat Pipes Measured Measured Temperature Vessel Working Fluid axial⁸ heat flux surface8 heat Range (°C) Material (kW/cm²) flux (W/cm²) Stainless 0.067 @ -163°C -200 to -80 Liquid Nitrogen 1.01 @ -163°C Steel Nickel. Aluminum, 0.295 2.95 -70 to +60 Liquid Ammonia Stainless Steel Copper, Nickel, 0.45 @ 100°CX -45 to +120 75.5 @ 100°C Methanol Stainless Steel Copper, 146@ 170°C +5 to +230 0.67 @ 200°C Water Nickel

20 juni 2017 1931 Congrescentrum Den Bosch

EVERONICS

Design Considerations

- Heat pipes to address ٠
 - Power capacity
 - Heat flux capacity
- Heat flux limitations •
 - Working fluids
 - Wicks

20 juni 2017

- **Constructions materials**
- Assembly practices and controls
- Practical heat flux limits •

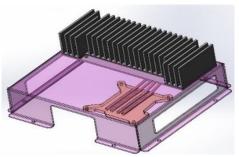
1931 Congrescentrum Den Bosch

100 to 120 W/cm² for sintered copper-water

ELECTRONICS

Design Considerations

ELECTRONICS


- Life and Reliability
 - Boundary conditions (freezing)
 - Load sharing and redundancy
 - Dry-out phenomena
 - Mechanical robustness of the design
- Hi-Contact Technology
 - Maximize contact area
 - Leaves minimal material
- Joining technologies
 - Soldering process
 - Epoxy resin
 - Thermal grease

Case Studies

Control Monitor Cooling

- Industrial application
- HPs to move heat outside of the box
- Two options
 - Passive solution (P = 35 W, Rth = 0,8 °C/W)
 - Active solution (P = 45 W, $R_{th} = 0.6 \text{ °C/W}$)
- Soldering technology
- Full aluminum construction
- Prototypes validated

Spreading Heat in a RRH

- Remote Radio Head
- HPs to spread heat
 - Very concentrated power losses
 - On existing die-casted solution
- Passive solution
 - P = 170 W, Rth = 0,4 °C/W
- Soldering technology
- Full aluminum construction
- Prototypes validated

20 juni 2017 1931 Congrescentrum Den Bosch

POWER ELECTRONICS

Aavid Expertise

ELECTRONICS

- HPs are flexible
- HPs systems to be designed with a correct approach
 - Prevent dry-out phenomena
 - Define all the characteristics of the system
 - Joining technologies
 - Number and diameter of the HPs
 - HP model
- Design Centres are able to fully develop a new product for you
 - Thermal design
 - Mechanical design
 - Validation test

Thanks for your attention! Questions are welcome!

Andrea Sce sce.a@aavid.com

+39 051 764079

ELECTRONICS