
Are you able to proof the power efficiency of your application?

High frequency Power calibration requirements

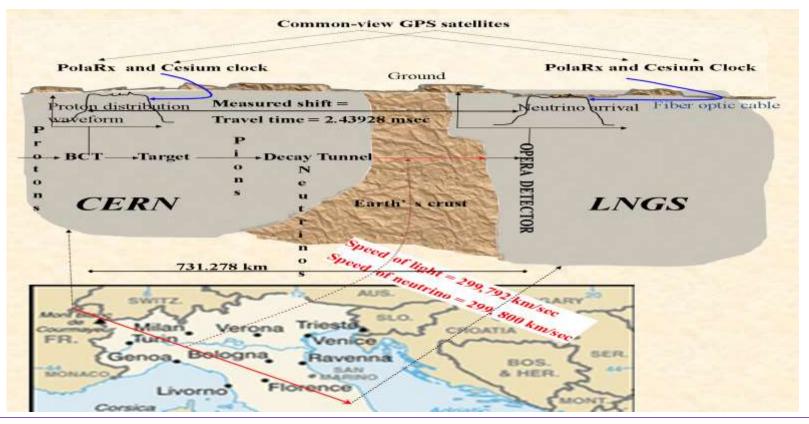
Michael Rietvelt

Power and Energy Measurement Specialist

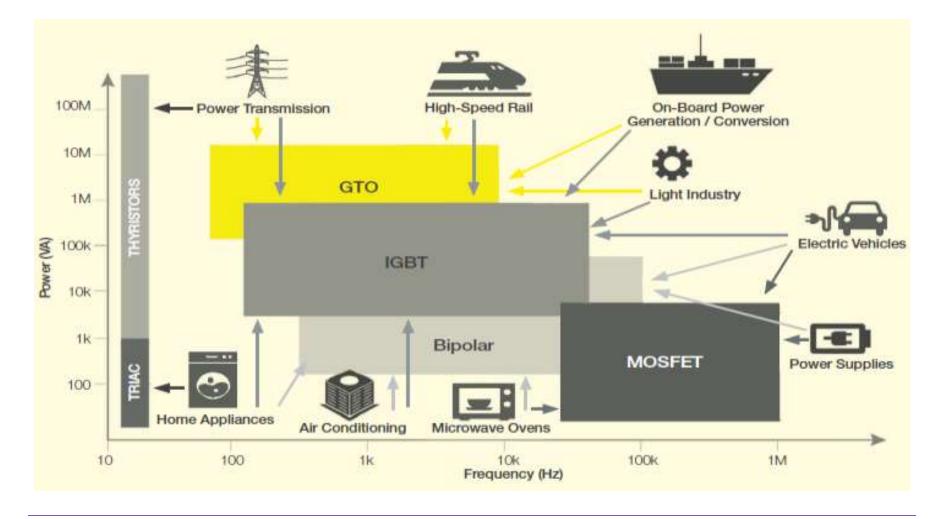
Definition of Measurement

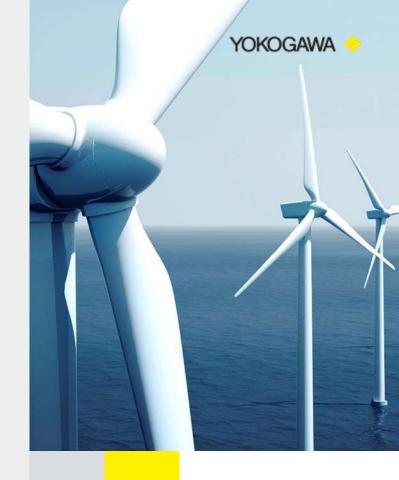
Any measurement of an object can be judged by the following metameasurement criteria values:

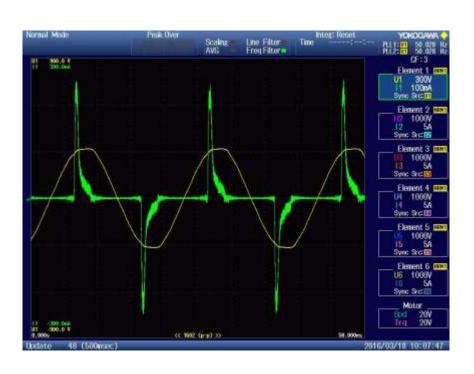
- ✓ <u>level of measurement</u> (which includes <u>magnitude</u>)
- √ dimensions (<u>units</u>)
- ✓ uncertainty.


Source: Wikipedia

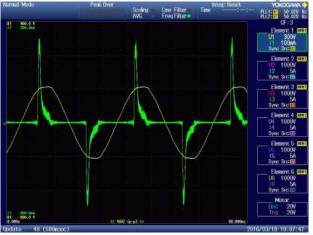
Why calibration


The Opera project

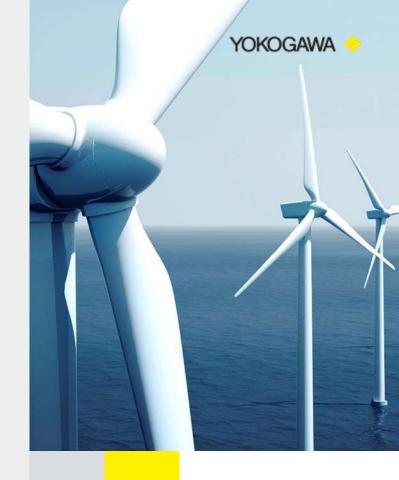

■ The Data That Threatened to Break Physics Faster-than-light neutrino (2011)


Frequencies in different applications

50Hz only?



When using a stabilized power supply



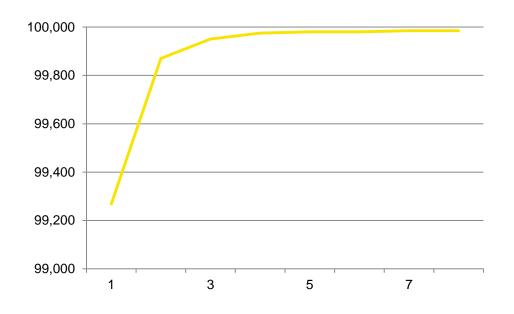
Traction

■ Voltage

Square wave ±0.05% requires 400 x f_{sw}

■ Current

Triangular impact ±0.05% requires 5 x f_{sw}


■ Power calibration frequency range

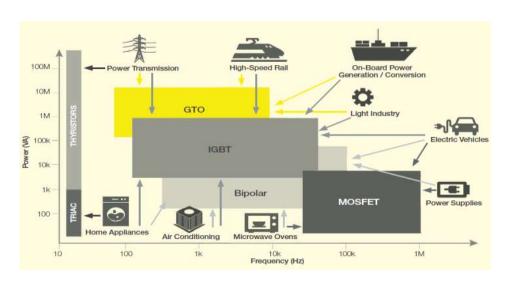
5 x or more f_{sw} depending on the required accuracy

How many harmonics orders to include in a triangular wave

Harmonic	% of total
order	signal
1	99.268 [%]
3	99.870 [%]
5	99.950 [%]
7	99.975 [%]
9	99.980 [%]
11	99.980 [%]
13	99.985 [%]
15	99.985 [%]

Renewable energy

- For renewable energy the used switching frequencies are between 2 10kHz. To reduce harmonic injection into the grid.
- The requirement for the frequency response depends on the quality of the output signals of the inverter
- Ideally these should be sinusoidal


Switching Frequencies

Switching technique Switching frequency

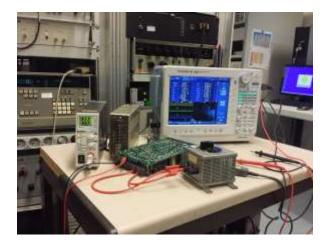
IGBT 2 kHz – 20kHz

SiC Mosfet 10kHz – 50kHz

GaN 50kHz - xMHz

■ As soon as there is a ripple on it phase becomes important.

On DC busses in inverters or DC input into inverters often contain a significant AC component



High frequency fundamental applications

- Wireless charging low power applications (phones, tablets etc.) 100 kHz 300 kHz
- Wireless charging electrical vehicles standardized US and Japan at 200 kW approx. 80 A at 85 kHz
- **■** Inductive cooking
- Industrial inductive ovens
- **■** Electronic components
- **■** Audio

Transformer in DC-DC converter

■ 40 kHz fundamental

Accreditation

Calibration Laboratories

Laboratories that are accredited to ISO 17025, have demonstrated that they are technically competent and able to produce precise and accurate calibration measurements

ISO 17025

norm

General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005,IDT)

Yokogawa accreditation Logo from: (Dutch Accreditation Council)

Capabilities Calibration Laboratories

Before Calibration
Check the CMC i.e. Scope of the
Calibration Laboratories

What should be checked:

- If they can calibrate the required measurement points
- If the uncertainty is good enough to calibrate your instrument

Annex to ISO/IEC 17025:2005 declaration of accreditation for registration number: K 164

of Yokogawa Europe B.V. Yokogawa European Standards Laboratory

This annex is valid from: 24-06-2015 to 01-07-2019

Replaces annex dated: NA

HCS code	Measured quantity, Range	Frequency	CMC ¹	Remarks
	AC Current Ratio			
	Current transformer - ratio	53 Hz	(3.7-10 ⁻⁶ - 5-10 ⁻⁶)-l _m /l _{out}	Measure Primary: 100 A to 1200 A Secondary:100 mA to 5 A
	Current transformer - phase	53 Hz	2.5 m ^a	Measure Primary: 100 A to 1200 A Secondary:100 mA to 5 A
10	Power			
	100 μW – 30 kW	DC	(1.4·10 ⁻⁶ – 4·10 ⁻⁴)·W	Generate / Measure 100 mV - 1 kV 1 mA - 30 A
	1 mW – 12 kW	53 Hz	(4·10 ⁻⁶ – 1.0·10 ⁻³) · W/VA	Generate / Measure 0.1 –8 V 10 mA – 1200 A cos(φ) = 1
				10-200 V

Calibration for power with Distorted waveforms

Yokogawa method to get traceability for distorted waveforms:

Calibration of:

- Gain (Voltage, Current) DC and AC up to higher frequencies for each range
- **■** Linearity of Voltage, Current (DC and AC)
- Power at power factor 1 up to higher frequencies for each range (gives amplitude response)
- **■** Linearity of Power (DC and AC)
- Power at power factor 0 (inductive and capacitive) up to higher frequencies. (gives phase response)
- Harmonic Analysis Function (PLL synchronization circuit) (Voltage, Current and Power)
- **■** Time base for frequency measurement

This includes up to 170 calibration points for one element.

Questions?

Yokogawa European Standards Laboratory

