The Effect of Dynamic On-State Resistance to System Losses in GaN-based Hard-Switching Applications Presented by: ## Introduction # What is dynamic R_{DS(on)}? - Dynamic R_{DS(on)} is due to charge trapping effect of electrons. It results in a decrease of the two-dimensional electron gas (2DEG) density, and therefore, cause the R_{DS(on)} to increase. It will cause additional loss for the GaN-based power electronic applications. #### In this presentation, we will present: - 1. What is the dynamic R_{DS(on)} value? - 2. How to measure it? - Reasonable soak time for pulse test - Separation of heating and trapping effects - 3. What is the percentage of the dynamic R_{DS(on)} loss from system-level in a real application? Lateral GaN HEMT device structure # Agenda - Measuring dynamic R_{DS(on)} - Test setups - Soak time variation and its importance - Junction temperature variation and conduction loss equation - Dynamic R_{DS(on)} effect on system loss - Energy loss distribution in GaN device - Comparison to Silicon and Silicon Carbide - Conclusions # Agenda - Measuring dynamic R_{DS(on)} - Test setups - Soak time variation and its importance - Junction temperature variation and conduction loss equation - Dynamic R_{DS(on)} effect on system loss - Energy loss distribution in GaN device - Comparison to Silicon and Silicon Carbide - Conclusions # Test setup I – pulse test #### Test setup I: Double pulse test (DPT) with soak time and T_i control #### Device under test (DUT): GS66508T GaN HEMT #### **Measurement equipment:** - Off-state V_{DS} measurement \rightarrow Differential probe - On-state $V_{DS(on)}$ measurement \rightarrow Clamping circuit - I_D measurement → Rogowski coil/Current shunt - T_i measurement → Thermal camera #### **Control variables:** - Soak time Control → Extra half-bridge S₃/S₄ - T_i Control \rightarrow Heating resistor/NTC thermistor - V_{DS}, I_D, and on-time → DPT - DSP controls all four gates (S₁-S₄) # Test setup II – continuous test #### **Test setup II: Continuous Boost converter setup** - DPT test setup can be reconfigured to a Boost converter setup for continuous test with the following changes, - 1. Remove/short soak time control leg; - 2. Change power source, load and inductor position; - 3. Replace temp control board to heat sink. # Pulse test setup – bottom view - GS66508T-based half-bridge on the bottom side - The heater and thermistor are installed upon DUT switch S₂ - Temperature is also monitored by thermal camera Bottom view with and without temperature control board Monitored temperature thru thermal holes on the back side Good T_j monitoring is important to separate heating and trapping effects # Pulse test setup – top view - GS66516B-based half-bridge on the top side - The clamping circuit board is installed upon switch S₄ and close to DUT S₂ Top view with and without clamping circuit Pulse test setup diagram # Soak time variation # **DPT** examples with different soak times Controllable soak time is achieved by controlling the halfbridge S₃/S₄ 19 juni 2019 1931 Congrescentrum 's-Hertogenbosch # Dynamic R_{DS(on)} results with soak time control # Summary on soak time vs. V_{ds} A Typical example of academic technical papers (without soak time control): - Soak time impacts dynamic R_{DS(on)} results. Improper soak time give erroneous results - For accurate power loss evaluation, evaluate dynamic $R_{DS(on)}$ at the soak time of your power system, 1 to 100 μ s # Agenda - Measuring dynamic R_{DS(on)} - Test setups - Soak time variation and its importance - Junction temperature variation and conduction loss equation - Dynamic R_{DS(on)} effect on system loss - Energy loss distribution in GaN device - Comparison to Silicon and Silicon Carbide - Conclusions # $R_{DS(on)}$ heating effect, k_{Ti} factor #### Heating effect on the GS66508T DUT (device is characterized before all tests): $R_{DS(on)}$ @25°C = 43.28 mohm $R_{DS(on)}$ @75°C = 64.5 mohm R_{DS(on)}**@75°C/**R_{DS(on)}@25°C=**1.49** The normalized increased R_{DS(on)} due to 75°C heating is 0.49 $(k_{Ti}=0.49)$ $R_{DS(on)}@125^{\circ}C = 91.7 \text{ mohm}$ R_{DS(on)}@**125°C/**R_{DS(on)}@25°C=**2.12** The normalized increased R_{DS(on)} due to 125°C heating is 1.12 $(k_{Ti}=1.12)$ **k**_{Ti} is the normalized increased R_{DS(on)} from heating effect DUT R_{DS(on)} vs. T_i characterization Congrescentrum 's-Hertogenbosch R_{DS(on)} decoupling quantitative analysis @ 400\ with 75°C and 125°C Measured $R_{DS(on)}$ @ 75°C, 400V, I_D ramp up from 10A to 30A, T_{soak} =1 μ s $k_{Tj} = 0.49$ $k_{dr} = 0.28$ Measured $R_{DS(on)}$ @ 125°C, 400V, I_D ramp up from 10A to 30A, T_{soak} =1 μ s $k_{Ti} = 1.12$ $k_{dr} = 0.28$ Good T_j monitoring is important to separate heating and trapping effects 19 juni 2019 1931 Congrescentrum 's-Hertogenbosch # PECFRONICS # Conduction loss calculation with *k* factors Different types of conduction loss calculation considering dynamic R_{DS(on)} #### Definition of *k* factors: - k_{Tj} is the normalized increased $R_{DS(on)}$ portion from heating effect. Normalized to static $R_{DS(on)(25C)}$. - k_{dr} is the normalized increased $R_{DS(on)}$ portion from trapping effect. Normalized to static $R_{DS(on)(25C)}$. #### Loss iteration with *k* factors: - Good thing about using the factor k_{dr} is it is temperature independent. - 1. An simpler loss calculation (still only one curve fittings with T_i : k_{Ti}). - 2. Easy for loss iteration calculation. | Solution (on) | | | |---------------|--|---| | | $I^{2}R_{DS(on)(25C)}^{*}(1+k_{Tj})^{*}(1+k_{dr})$ | $I^2R_{DS(on)(25C)}^*(1+k_{Tj}+k_{dr})$ | | | Previous misunderstanding on loss calculation | Proposed loss calculation | | Accuracy? | | | | | 3 Rdson(Ti)/Rdson(25C) | | Summary on R_{DS(on)} ratios vs. junction temperature T_j As $T_j \nearrow \longrightarrow R_{DS(on)(Tj)}$ or $k_{Tj} \nearrow \longrightarrow k_{dr}$ constant with T_i 19 juni 2019 1931 Congrescentrum 's-Hertogenbosch # Conduction loss calculation made simple and accurate **Example:** conduction loss calculation considering dynamic R_{DS(on)} If $R_{DS(on)(25C)}$ =43.27 mohm, I_{RMS} =10 A, and T_i =125 °C #### Different types of conduction loss calculation considering dynamic R_{DS(on)} | | $I^{2}R_{DS(on)(25C)}^{*}(1+k_{Tj})^{*}(1+k_{dr})$ | $I^2R_{DS(on)(25C)}^*(1+k_{Tj}+k_{dr})$ | |-----------|--|---| | | 4.327x(1+1.12)x(1+0.28)=11.74 W | 4.327x(1+1.12+0.28)=10.38 W | | Accuracy? | | | That's 11.74-10.38=1.36 W difference, even without considering self-heating; For engineers who are more familiar with energy loss, this is like 13.6 μJ*100 kHz=1.36 W; If the thermal resistance is about 8 °C/W, that's 10 °C difference. - k_{dr} is the simple easy way to calculate dynamic $R_{DS(on)}$ - Use power loss = $I^2R_{DS(on)(25C)}^*(1+k_{T_i}+k_{dr})$ for simple and accurate results Summary on R_{DS(on)} ratios vs. junction temperature T_i # Agenda - Measuring dynamic R_{DS(on)} - Test setups - Soak time variation and its importance - Junction temperature variation and conduction loss equation - Dynamic R_{DS(on)} effect on system loss - Energy loss distribution in GaN device - Comparison to Silicon and Silicon Carbide - Conclusions # Energy loss distribution in GaN device By knowing V_{DS}, I_D, conduction time, and T_i, the energy loss is accumulated and the final overall loss can be obtained. The energy loss trajectory also presents the overall loss breakdown. A hard-switching cycle of GaN HEMT and its energy loss trajectory The impact of dynamic R_{DS(on)} should be compared to the overall loss in a switching cycle Please refer to GS technical papers below for more details on switching loss E_{on}/E_{off}: 1. R. Hou, J. Lu, and D. Chen, "Parasitic capacitance E_{aoss} loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs," in *Proc. 2018 IEEE APEC*, San Antonio, TX, Mar. 2018. 2. R. Hou, J. Xu, and D. Chen, "Multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration," in *Proc. 2017 IEEE WiPDA*, Albuquerque, NM, Oct. 2017. # Examples - conduction loss distribution @ 75°C and 125°C • Two 400 V examples: T_i of 75 °C & 125 °C. For both, device V_{DS} voltage is 400 V, current starts at 10 A then ramps up to 20 A with a 2.2 μS conduction time. With increasing T_i, trapping effect loss becomes less significant compared to heating effect loss 1931 Congrescentrum 's-Hertogenbosch # Examples – overall loss distribution based on pulse test - In conduction loss, with T_i increasing, the $R_{DS(on)}$ loss from trapping effect becomes less significant than heating effect. - By adding the switching loss E_{on}/E_{off} , the overall loss for one switching cycle can be obtained. Overall loss breakdown @ 125 °C Compared to E_{on}, the dynamic R_{DS(on)} loss has a very small effect on the system efficiency # Loss distribution for GaN HEMT based on continuous Boost test The test setup is reconfigured to a Boost converter for continuous running. **Boost converter waveforms** **Heatsink installation** **Boost converter test setup** - Temperature control board is removed and replaced by a heatsink attached on the GS66508T device on the PCB bottom side. - T_i is still monitored through thermal hole. 1931 Congrescentrum 's-Hertogenbosch ## Loss distribution for GaN HEMT based on continuous Boost test - Converter continuous tests are performed with different load currents and switching frequencies - V_{in} =200 V, V_{out} =400 V, $R_{th ia}$ =8.7 °C/W, T_{amb} =25 °C Hard-switching device loss breakdown in a GaN-based Boost converter under different loads and switching frequencies Power loss due to dynamic R_{DS(on)} is a small portion of total system loss juni 2019 1931 Congrescentrum 's-Hertogenbosch Comparison to Silicon and Silicon Carbide - Overall, GaN has much lower losses compared to Silicon and SiC, 1.4x to 3.7x lower - GaN has significant advantages over other technologies on switching loss E_{op}/E_{off} # Conclusions # • Dynamic R_{DS(on)} - Measurement: - Good T_i monitoring is important to separate heating and trapping effects; - Continuous mode test provides the most accurate results; - Soak time control (typically 1 to 100 μs) is needed. - Loss calculation: use $I^2R_{DS(on)(25C)}^*(1+k_{Ti}+k_{dr})$ for simple and accurate results - The trapping effect (dynamic $R_{DS(on)}$) is **significantly less** than the heating (temperature) effect #### System Power loss - Power loss due to dynamic R_{DS(on)} is a small portion of total system power loss - Total system power loss: GaN outperforms other technologies by a wide margin # Thank you for your attention! Have a good day. **ECOMAL Nederland B.V.** **Sales Branch Office** **Richard Bruins** Bovenkerkerweg 39 1185 XA Amstelveen E-Mail:Richard.Bruins@ecomal.com Phone: +31 20 347 31 80 **ECOMAL Europe GmbH Business Development** Carl Benz Straße 5 35440 Linden E-Mail: technique@ecomal.com