

The Effect of Dynamic On-State Resistance to System Losses in GaN-based Hard-Switching Applications

Presented by:

Introduction

What is dynamic R_{DS(on)}?

- Dynamic R_{DS(on)} is due to charge trapping effect of electrons. It results in a decrease of the two-dimensional electron gas (2DEG) density, and therefore, cause the R_{DS(on)} to increase. It will cause additional loss for the GaN-based power electronic applications.

In this presentation, we will present:

- 1. What is the dynamic R_{DS(on)} value?
- 2. How to measure it?
 - Reasonable soak time for pulse test
 - Separation of heating and trapping effects
- 3. What is the percentage of the dynamic R_{DS(on)} loss from system-level in a real application?

Lateral GaN HEMT device structure

Agenda

- Measuring dynamic R_{DS(on)}
 - Test setups
 - Soak time variation and its importance
 - Junction temperature variation and conduction loss equation
- Dynamic R_{DS(on)} effect on system loss
 - Energy loss distribution in GaN device
 - Comparison to Silicon and Silicon Carbide
- Conclusions

Agenda

- Measuring dynamic R_{DS(on)}
 - Test setups
 - Soak time variation and its importance
 - Junction temperature variation and conduction loss equation
- Dynamic R_{DS(on)} effect on system loss
 - Energy loss distribution in GaN device
 - Comparison to Silicon and Silicon Carbide
- Conclusions

Test setup I – pulse test

Test setup I:

Double pulse test (DPT) with soak time and T_i control

Device under test (DUT): GS66508T GaN HEMT

Measurement equipment:

- Off-state V_{DS} measurement \rightarrow Differential probe
- On-state $V_{DS(on)}$ measurement \rightarrow Clamping circuit
- I_D measurement → Rogowski coil/Current shunt
- T_i measurement → Thermal camera

Control variables:

- Soak time Control → Extra half-bridge S₃/S₄
- T_i Control \rightarrow Heating resistor/NTC thermistor
- V_{DS}, I_D, and on-time → DPT
- DSP controls all four gates (S₁-S₄)

Test setup II – continuous test

Test setup II: Continuous Boost converter setup

- DPT test setup can be reconfigured to a Boost converter setup for continuous test with the following changes,
 - 1. Remove/short soak time control leg;
 - 2. Change power source, load and inductor position;
 - 3. Replace temp control board to heat sink.

Pulse test setup – bottom view

- GS66508T-based half-bridge on the bottom side
- The heater and thermistor are installed upon DUT switch S₂
- Temperature is also monitored by thermal camera

Bottom view with and without temperature control board

Monitored temperature thru thermal holes on the back side

Good T_j monitoring is important to separate heating and trapping effects

Pulse test setup – top view

- GS66516B-based half-bridge on the top side
- The clamping circuit board is installed upon switch S₄ and close to DUT S₂

Top view with and without clamping circuit

Pulse test setup diagram

Soak time variation

DPT examples with different soak times

Controllable soak time is achieved by controlling the halfbridge S₃/S₄

19 juni 2019 1931 Congrescentrum 's-Hertogenbosch

Dynamic R_{DS(on)} results with soak time control

Summary on soak time vs. V_{ds}

A Typical example of academic technical papers (without soak time control):

- Soak time impacts dynamic R_{DS(on)} results. Improper soak time give erroneous results
- For accurate power loss evaluation, evaluate dynamic $R_{DS(on)}$ at the soak time of your power system, 1 to 100 μ s

Agenda

- Measuring dynamic R_{DS(on)}
 - Test setups
 - Soak time variation and its importance
 - Junction temperature variation and conduction loss equation
- Dynamic R_{DS(on)} effect on system loss
 - Energy loss distribution in GaN device
 - Comparison to Silicon and Silicon Carbide
- Conclusions

$R_{DS(on)}$ heating effect, k_{Ti} factor

Heating effect on the GS66508T DUT (device is characterized before all tests):

 $R_{DS(on)}$ @25°C = 43.28 mohm

 $R_{DS(on)}$ @75°C = 64.5 mohm

R_{DS(on)}**@75°C/**R_{DS(on)}@25°C=**1.49**

The normalized increased R_{DS(on)} due to 75°C heating is 0.49

 $(k_{Ti}=0.49)$

 $R_{DS(on)}@125^{\circ}C = 91.7 \text{ mohm}$

R_{DS(on)}@**125°C/**R_{DS(on)}@25°C=**2.12**

The normalized increased R_{DS(on)} due to 125°C heating is 1.12

 $(k_{Ti}=1.12)$

k_{Ti} is the normalized increased R_{DS(on)} from heating effect

DUT R_{DS(on)} vs. T_i characterization

Congrescentrum 's-Hertogenbosch

R_{DS(on)} decoupling quantitative analysis @ 400\ with 75°C and 125°C

Measured $R_{DS(on)}$ @ 75°C, 400V, I_D ramp up from 10A to 30A, T_{soak} =1 μ s

 $k_{Tj} = 0.49$

 $k_{dr} = 0.28$

Measured $R_{DS(on)}$ @ 125°C, 400V, I_D ramp up from 10A to 30A, T_{soak} =1 μ s

 $k_{Ti} = 1.12$

 $k_{dr} = 0.28$

 Good T_j monitoring is important to separate heating and trapping effects

19 juni 2019 1931 Congrescentrum 's-Hertogenbosch

PECFRONICS

Conduction loss calculation with *k* factors

Different types of conduction loss calculation considering dynamic R_{DS(on)}

Definition of *k* factors:

- k_{Tj} is the normalized increased $R_{DS(on)}$ portion from heating effect. Normalized to static $R_{DS(on)(25C)}$.
- k_{dr} is the normalized increased $R_{DS(on)}$ portion from trapping effect. Normalized to static $R_{DS(on)(25C)}$.

Loss iteration with *k* factors:

- Good thing about using the factor k_{dr} is it is temperature independent.
- 1. An simpler loss calculation (still only one curve fittings with T_i : k_{Ti}).
- 2. Easy for loss iteration calculation.

Solution (on)		
	$I^{2}R_{DS(on)(25C)}^{*}(1+k_{Tj})^{*}(1+k_{dr})$	$I^2R_{DS(on)(25C)}^*(1+k_{Tj}+k_{dr})$
	Previous misunderstanding on loss calculation	Proposed loss calculation
Accuracy?		
	3 Rdson(Ti)/Rdson(25C)	

Summary on R_{DS(on)} ratios vs. junction temperature T_j

As $T_j \nearrow \longrightarrow R_{DS(on)(Tj)}$ or $k_{Tj} \nearrow \longrightarrow k_{dr}$ constant with T_i

19 juni 2019 1931 Congrescentrum 's-Hertogenbosch

Conduction loss calculation made simple and accurate

Example: conduction loss calculation considering dynamic R_{DS(on)}

If $R_{DS(on)(25C)}$ =43.27 mohm, I_{RMS} =10 A, and T_i =125 °C

Different types of conduction loss calculation considering dynamic R_{DS(on)}

	$I^{2}R_{DS(on)(25C)}^{*}(1+k_{Tj})^{*}(1+k_{dr})$	$I^2R_{DS(on)(25C)}^*(1+k_{Tj}+k_{dr})$
	4.327x(1+1.12)x(1+0.28)=11.74 W	4.327x(1+1.12+0.28)=10.38 W
Accuracy?		

That's 11.74-10.38=1.36 W difference, even without considering self-heating;

For engineers who are more familiar with energy loss, this is like 13.6 μJ*100 kHz=1.36 W;

If the thermal resistance is about 8 °C/W, that's 10 °C difference.

- k_{dr} is the simple easy way to calculate dynamic $R_{DS(on)}$
- Use power loss = $I^2R_{DS(on)(25C)}^*(1+k_{T_i}+k_{dr})$ for simple and accurate results

Summary on R_{DS(on)} ratios vs. junction temperature T_i

Agenda

- Measuring dynamic R_{DS(on)}
 - Test setups
 - Soak time variation and its importance
 - Junction temperature variation and conduction loss equation
- Dynamic R_{DS(on)} effect on system loss
 - Energy loss distribution in GaN device
 - Comparison to Silicon and Silicon Carbide
- Conclusions

Energy loss distribution in GaN device

By knowing V_{DS}, I_D, conduction time, and T_i, the energy loss is accumulated and the final overall loss can be obtained.

The energy loss trajectory also presents the overall loss breakdown.

A hard-switching cycle of GaN HEMT and its energy loss trajectory

The impact of dynamic R_{DS(on)} should be compared to the overall loss in a switching cycle

Please refer to GS technical papers below for more details on switching loss E_{on}/E_{off}:

1. R. Hou, J. Lu, and D. Chen, "Parasitic capacitance E_{aoss} loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs," in *Proc. 2018 IEEE APEC*, San Antonio, TX, Mar. 2018.

2. R. Hou, J. Xu, and D. Chen, "Multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration," in *Proc. 2017 IEEE WiPDA*, Albuquerque, NM, Oct. 2017.

Examples - conduction loss distribution @ 75°C and 125°C

• Two 400 V examples: T_i of 75 °C & 125 °C. For both, device V_{DS} voltage is 400 V, current starts at 10 A then ramps up to 20 A with a 2.2 μS conduction time.

With increasing T_i, trapping effect loss becomes less significant compared to heating effect loss

1931 Congrescentrum 's-Hertogenbosch

Examples – overall loss distribution based on pulse test

- In conduction loss, with T_i increasing, the $R_{DS(on)}$ loss from trapping effect becomes less significant than heating effect.
- By adding the switching loss E_{on}/E_{off} , the overall loss for one switching cycle can be obtained.

Overall loss breakdown @ 125 °C

Compared to E_{on}, the dynamic R_{DS(on)} loss has a very small effect on the system efficiency

Loss distribution for GaN HEMT based on continuous Boost test

 The test setup is reconfigured to a Boost converter for continuous running.

Boost converter waveforms

Heatsink installation

Boost converter test setup

- Temperature control board is removed and replaced by a heatsink attached on the GS66508T device on the PCB bottom side.
- T_i is still monitored through thermal hole.

1931 Congrescentrum 's-Hertogenbosch

Loss distribution for GaN HEMT based on continuous Boost test

- Converter continuous tests are performed with different load currents and switching frequencies
- V_{in} =200 V, V_{out} =400 V, $R_{th ia}$ =8.7 °C/W, T_{amb} =25 °C

Hard-switching device loss breakdown in a GaN-based Boost converter under different loads and switching frequencies

Power loss due to dynamic R_{DS(on)} is a small portion of total system loss

juni 2019 1931 Congrescentrum 's-Hertogenbosch

Comparison to Silicon and Silicon Carbide

- Overall, GaN has much lower losses compared to Silicon and SiC, 1.4x to 3.7x lower
- GaN has significant advantages over other technologies on switching loss E_{op}/E_{off}

Conclusions

• Dynamic R_{DS(on)}

- Measurement:
 - Good T_i monitoring is important to separate heating and trapping effects;
 - Continuous mode test provides the most accurate results;
 - Soak time control (typically 1 to 100 μs) is needed.
- Loss calculation: use $I^2R_{DS(on)(25C)}^*(1+k_{Ti}+k_{dr})$ for simple and accurate results
- The trapping effect (dynamic $R_{DS(on)}$) is **significantly less** than the heating (temperature) effect

System Power loss

- Power loss due to dynamic R_{DS(on)} is a small portion of total system power loss
- Total system power loss: GaN outperforms other technologies by a wide margin

Thank you for your attention!

Have a good day.

ECOMAL Nederland B.V.

Sales Branch Office

Richard Bruins

Bovenkerkerweg 39

1185 XA Amstelveen

E-Mail:Richard.Bruins@ecomal.com

Phone: +31 20 347 31 80

ECOMAL Europe GmbH Business Development

Carl Benz Straße 5

35440 Linden

E-Mail: technique@ecomal.com