PE 2019
 Designing highly accurate power amplifiers
 Jeroen van Duivenbode (ASML, TU/e)

Agenda

- Speaker affiliation and roles
- ASML
- Designing power electronics in general
- Designing power amplifiers in lithography tools
- Amplifier in mechatronics position loop
- basic position loop
- loop sensitivities
- amplifier error gain
- link amplifier errors to system performance
- example
- Pareto
- Conclusion

ASML TU/e

CL Power and High Voltage Electronics

TU/e Fellow (Electromechanics \& Power Electronics)

Movie intro ASML: machines to make chips

ASML's tools are critical to realize Moore's law

- at present 10^{10} /chip
(Apple A12X)

Power electronics design...

... power electronics always serve an application.

Power amplifiers in lithography tools

- sub-nanometer accurate dynamic positioning of moving stages

including levitation

Generic approach to design power electronics for any demanding application

- from

1. ask for specifications
2. make design
3. find out it's not what th customer needed or C gotten

Positioning of moving stages

Role of power amplifiers: supply currents for linear actuators

linear - short stroke

linear - long stroke

planar

Basic 1-DoF position loop

root locus with $C=K_{p}$

System is inherently unstable (plant has 180° phase shift).

Basic 1-DoF position loop

- making stable, option 1
- zero/pole controller (lead/lag)
- zero below desired BW
- pole above desired BW
- set gain to maximize phase margin
- set distance zero - pole for desired phase margin

$C_{1}=K \cdot \frac{s \tau_{z}+1}{s \tau_{p}+1}, P=\frac{1}{s^{2}}$

Basic 1-DoF position loop

- making stable, option 2

- PID + 2LPF filter controller
- extra pole at 0 Hz
more LF open loop gain
\rightarrow less sensitivity
- two zeroes below desired BW
- two poles above desired BW
- set gain to maximize phase margin
- set distance zeros - poles for desired phase margin

Uhm..., sensitivity?

$C_{2}=C_{\text {PID }} \cdot C_{\text {2LPF }}$
$\Leftrightarrow C_{2}=\left[s K_{d}+K_{p}+\frac{K_{i}}{s}\right] \cdot \frac{\omega_{L P}^{2}}{s^{2}+s 2 \zeta_{L P} \omega_{L P}+\omega_{L P}^{2}}$
$\Leftrightarrow C_{2}=K_{d} \frac{s^{2}+s \frac{K_{p}}{K_{d}}+\frac{K_{i}}{K_{d}}}{s} \cdot \frac{\omega_{L P}^{2}}{s^{2}+s 2 \zeta_{L P} \omega_{L P}+\omega_{L P}^{2}}$

root locus $C_{2} \cdot P$

Loop sensitivities

$$
\begin{array}{lll}
\text { sensitivity } & & S=\frac{y}{d_{o}}=\frac{1}{1+C P H} \\
& \begin{array}{c}
\text { equal } \\
\text { doumsionless } \\
\text { input sensitivity }
\end{array} & S_{i}=\frac{p}{d}=\frac{1}{1+C P H}
\end{array}
$$

process sensitivity $\quad S_{p}=\frac{y}{d}=\frac{P}{1+C P H}$
defines sensitivity of position loop for power amplifier errors

Note:
open loop gain

$$
H_{O L}=C P H=\frac{1}{s}-1=\frac{-c}{p}=\frac{d-p}{p}=\frac{-c}{c+d}
$$

Mechatronic position loop

 and relevant sensitivities

Relevant process sensitivities:

(1) injected force gain

$$
S_{p, \text { force }}=\frac{y}{f_{\text {inj }}}=\frac{P_{m}}{1+C_{m} \cdot P_{m}}[\mathrm{~m} / \mathrm{N}]
$$

defines
sensitivity of
position loop for
(2) amp noise gain
$S_{p, a m p}=\frac{y}{i_{e r r}}=\frac{K_{m} \cdot P_{m}}{1+C_{m} \cdot P_{m}}[m / A]$
power amplifier
errors
(3) error force gain
\approx (1) for frequency $F<F_{B W, a m p}$)

Amplifier "noise" gain

defined by motor constant K, mass m and pos. loop bandwidth $F_{B W}$
amplifier noise gain $=$

$$
\begin{aligned}
& C_{A N G}=\frac{y_{\varepsilon}}{i_{\varepsilon}}=\frac{\frac{K_{m}}{m \cdot s^{2}}}{1+C \cdot \frac{m_{e s t}}{K_{m, e s t}} \cdot H_{\text {ampCL }} \cdot \frac{K_{m}}{m \cdot s^{2}}}[\mathrm{~m} / A] \\
& \Leftrightarrow C_{A N G} \approx \frac{K_{m}}{m} \cdot \frac{1}{s^{2}+C} \text { for } F \leq 10 \cdot F_{B W \text { posloop }} \rightarrow H_{\text {amp } C L} \approx 1
\end{aligned}
$$

$$
\text { (3) } F>F_{\text {BWposloop }} \rightarrow\left|C_{K_{m}} P_{m}\right| \ll 1 \Leftrightarrow\left|\frac{C}{s^{2}}\right| \ll 1 \Leftrightarrow|C| \ll\left|s^{2}\right|
$$

$$
\Rightarrow C_{A N G_{3}} \approx \frac{K_{m}}{m} \cdot \frac{1}{s^{2}}
$$

$$
\text { (1.2 } F<F_{\text {BWposloop }} \rightarrow|C P| \gg 1 \Leftrightarrow\left|\frac{C}{s^{2}}\right| \gg 1 \Leftrightarrow|C| \gg\left|s^{2}\right|
$$

$$
\Rightarrow C_{A N G_{1,2}} \approx \frac{K_{m}}{m} \cdot \frac{1}{c}
$$

(3) $C_{A N G_{3}} \approx \frac{K_{m}}{m} \cdot \frac{1}{s^{2}} \Rightarrow\left|c_{A N G_{3}}\right| \approx \frac{K_{m}}{m} \cdot \frac{1}{4 \pi^{2}} \cdot \frac{1}{F^{2}} \quad[m / A]$
(2) $C_{A N G_{2}} \approx \frac{K_{m}}{m} \cdot \frac{1}{C} \Rightarrow\left|C_{A N}\right| \approx \frac{K_{m}}{m} \cdot \frac{1}{4 \pi^{2} \cdot F_{B W}} \cdot \frac{1}{F} \quad[m / A]$
(1) $C_{A N G_{1}} \approx \frac{K_{m}}{m} \cdot \frac{1}{C} \Rightarrow\left|C_{A N}\right| \approx \frac{K_{m}}{m} \cdot \frac{1}{4 \pi^{2} \cdot B C \cdot F_{B W^{3}}} \cdot F \quad[m / A]$

linking amplifier errors to system performance

Critical dimension $C D$, overlay $O V L$

CD is smallest feature size (line width, isolation width, half pitch)

OVL is misalignment between one layer and the next

MA/MSD evaluation

time domain:
chip area on moving wafer

static slit of light

$$
T_{\text {slit }}=\frac{y_{\text {slit }}}{v_{\text {scan }}}
$$

MA: convolute error signal with window

MSD: convolute square of (error signal - MA) with window function and take square root of result.

position error $e(t)$

$$
M A=\frac{1}{T_{\text {slit }}} \int_{\frac{-T_{\text {slit }}}{2}}^{\frac{T_{\text {slit }}}{2}} e(t) \cdot d t
$$

$$
M S D=\sqrt{\frac{1}{T_{\text {slit }}} \int_{\frac{-T_{\text {slit }}}{2}}^{\frac{T_{\text {slit }}}{2}}[e(t)-M A]^{2} \cdot d t}
$$

$$
T_{\text {slit }}=\frac{y_{\text {slit }}}{v_{\text {scan }}}
$$

Position set point generator

Example: effect of amplifier gain error

Pareto analysis

\rightarrow identify the lowest number of improvements to get the maximum effect ("bang for buck", "low hanging fruit", "cherry picking")

Summary

