

First aid for thermal challenges with electronics

Ad Musters – Thal Technologies by 19 June 2019

Thal Technologies

- Founded in 2003
- Office and factory in The Netherlands
- Thermal management materials and converting
- LED modules
- LED Solution provider and knowledge center

Introduction

- Why thermal management?
- Thermal management theory
- PCB cooling principles
- Thermal interface materials
- Heatsink selection
- Examples

Influence of temperature on lifetime

Not all is as it seems...

Cooling via Aluminum base Printed Circuit Board

Cooling through the PCB to a cool base plate

Pedestal design Metal board

Thermal interface material

- Purpose: Good contact between PCB and Cooling surface or heatsink.
 - COB → thermal grease or phase change
 - Metal core PCB → graphite foil, thin gap pad or tape
 - FR4 PCB → thin gap pad or tape

Interfacial Thermal Resistance

 Every surface to surface interface produces a resistance to heat transfer

 Point to point contact provides the majority of heat transfer (Air is a poor conductor of heat)

Interfacial Thermal Resistance

 Every surface to surface interface produces a resistance to heat transfer

Gap filled with Soft-thermally conductive

 Metal to metal contact provides heat transfer (Replace Air with a soft -thermally conductive material)

Heatsinks

Why: Increase cooling surface

- Extrusion or sheet aluminum
- Die cast aluminum
- Active Cooling, fan or jet cooling
- Often the housing is the heatsink

Heatsink with LZP connectorised PCB in downlighter

Application: LED lighting Cooling: Natural Convection

Heatsink datasheet for Natural convection

Heat Sink Configuration	Dimensions [mm]		
Diameter (D)	100		
Length (L)	95		
Base thickness (t)	10		
No. of Fins	20		
Weight (grams)	700		
Note	Baseplate with outer		
	thread M101x1 and		
	mounting holes		

R_{ca} = case-to- ambient thermal resistance (°C/W) V = velocity (ft/min)

Heatsink datasheet for fan cooling

Heat Sink Configuration	Dimension (mm)
Height (H)	10
Width (W)	40
Length (L)	40
Base plate thickness (t)	1.3
Fin Thickness (l)	0.4
No. of Fins	15
Weight (grams)	12

Thermal fundamentals and calculations

Heat transfer

Temperature rise ΔT_1 from junction to air:

$$Q = h_{tot} \times A \times \Delta T_1$$

Q = power dissipation

h = heat transfer coefficient

A = surface area

Three modes of heat transfer:

$$h_{tot} = h_{cond} + h_{conv} + h_{rad}$$

- Conduction
- Convection
- Radiation

Input parameters

- Ambient temperature
- Life time expectations
- Safe surface temperature
- Junction maximum temperature
- Plastics maximum temperature

365nm UV LED Gen 2 Emitter

LZ1-00UV00

Electrical Characteristics @ T_c = 25°C

Parameter	Symbol	Typical	Unit
Forward Voltage (@ I _F = 700mA)	V _F	3.8	V
Temperature Coefficient of Forward Voltage	$\Delta V_{F}/\Delta T_{J}$	-1.3	mV/°C
Thermal Resistance (Junction to Case)	RO _{J-C}	4.2	°C/W

Table 6:

Conductive heat transfer

Conductive path from source to the next layer

q = Power dissipation [W]

A = Area over which the power is coupled [m²]

k = Thermal conductivity [W/mK]

dx = thickness of the layer or length of the thermal path. [m]

dT = Temperature difference over the total thermal path [K]

Thermal conductivity

 Ideally the whole system should have the same temperature. This can be reached with the use of highly thermal conductive (k) materials and minimizing the interfacial resistance.

Material Thermal conductivity

Gold

Aluminium

Steel (low carbon)

Boron Nitride

Solder

Stainless Steel

Alumina

Mica

Water

Heat sink compound

Epoxy

90..400 W/mK

290 W/mK

50 .. 235 W/mK

66 W/mK

39 W/mK

20..50 W/mK

20 W/mK

27 W/mK

0.7 W/mK

0.5 W/mK

0.5 .. 4 W/mK

0.3 W/mK

0.2 .. 0.3 W/mK

0.2 W/mK

0.027 W/mK

Simulation example spreading resistance

Convective heat transfer

Assembly is in Still Air

• Use the following equation for rule of thumb

$$q = h A \Delta T$$

$$h = a \left(\frac{\Delta T}{L}\right)^{1/4}$$

$$q = \text{dissipated power (W)}$$

$$A = \text{Area (m^2)}$$

$$T = (\text{Temperature plate - Temperature ambient) (K)}$$

$$L = \text{plate length (m)}$$

$$h = \text{convective heat transfer coefficient (W/m^2K)}$$

$$a = \text{coefficient 1.32 for top of plate, 0.59 for bottom,}$$

$$dependent on shape and orientation}$$

Still air (or natural convection) still requires air flow (e.g. holes in cover), otherwise air is just a good insulator

Buoyancy Heat transfer with air on vertical wall

Heat transfer

Boiling, water

Boiling, organic liquids

Condensation, water vapor

Condensation, organic vapors

Liquid metals, forced convection

Water, forced convection

Organic liquids, forced convection

Gases, 200 atm, forced convection

Gases, 1 atm, forced convection

Gases, natural convection

10 10^2 10^3 10^4 10^5 $h(W/m^2K)$

Source: Heat Transfer, Adrian Bejan

Radiation

- Radiation can remove heat from the heatsink but also pick up e.g. solar irradiation and cause a heat rise of the system.
- Radiation contribution is strongly dependent on the surface treatment and temperature difference.

Radiation

$$Q_{12} = h_{rad} \times A \times \Delta T$$

$$Q_{12} = \varepsilon F_{12} A \sigma (T_1^4 - T_2^4)$$

 ϵ absorption coefficient [-]

F₁₂ View factor [-]

A projected surface area [m²]

σ Stefan-Boltzmann constant [W/m²K⁴]

T₁ Surface temperature [K]

T₂ Ambient temperature [K]

Surface emissivity coefficient ${f \epsilon}$

Aluminium polished 0.04 ~ 0.05

Aluminium oxidized 0.11 ~ 0.19

Aluminium anodized $0.6 \sim 0.8$

Aluminium black anodized $0.7 \sim 0.9$

Copper polished 0.04

Copper rolled 0.64

Lead oxidized 0.28

Lead unoxidized 0.05

Nickel electrolytic 0.04

Chromium polished 0.07

Lacquer 0.85 ~ 0.97

Always use three steps

- Successful thermal engineering practice by:
 - Calculation (at least one-dimensional)
 - Simulate / Verify
 - Test / measure

How can we help you?

Ing. Ad Musters
Technical Director
Thal Technologies
adm@thal-technologies.com
www.thal-technologies.com
Tel. +31 36 2026060

