

High Current Power inductors

more than you expect

Alex Snijder
Field Application Engineer
Wurth Elektronik Nederland BV

Alex.snijder@we-online.com

+31 (0) 6 10 98 48 25

17/06/19

19 juni 2019 1931 Congrescentrum 's-Hertogenbosch POWERONICS

Agenda

- What is High Current
- Inductor losses
- Inductor Currents
- How to select the best inductor for a Buck?
- What about Capacitors?

DD.MM.YYYY | Technical Academy | Public | <TITLE>

BUCK CONVERTER: Topology

Switch Open

Switch Closed

What is High Current?

- Depends on the perspective of the engineer/application
- For an inductor the following is important
- DC-losses in an inductor
 - $P_{winding} = I^2 . R_{dc}$
- AC losses in an inductor
 - Cores losses + wire losses

DD.MM.YYYY | Technical Academy | Public | <TITLE>

How to optimize for DC-losses?

- DC-losses in an inductor
 - $P_{winding} = I^2.c$
 - $I^2 = I_{out^2}$
 - $\blacksquare R_{DC} = \rho \cdot \frac{l}{A}$

D Electrical Properties:

Properties	Test conditions		Value	Unit	Tol.	
Inductance	1 kHz/ 250 mV	L	10	μН	±20%	
Rated current	$\Delta T = 40 \text{ K}$	l _R	7.1	Α	max.	
Saturation current	ΔL/L < 10%	Isat	10.5	Α	typ.	
DC Resistance	@ 20°C	R _{DC}	0.013	Ω	typ.	
DC Resistance	@ 20°C	R _{DC}	0.021	Ω	max.	
Self resonant frequency		fres	21	MHz	typ.	

- So what can we do?
 - We can lower the R_{dc}
 - By lowering the length of the wire
 - Increasing the surface area of the wire
 - Change the wire construction

Choosing a different conductor material

DD.MM.YYYY | Technical Academy | Public | <TITLE>

How to optimize for AC-losses?

AC-losses in an inductor

$$P_{core} = K \cdot f^a \cdot B^b$$

AC-losses in a wire structure

Proximity effect
B₁
F₂
I₂
B₂
B₂

DD.MM.YYYY | Technical Academy | Public | <TITLE>

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

How to optimize for AC-losses?

- AC-losses in an inductor
 - $P_{core} = K \cdot f^a \cdot B^b$
- So what can we do to lower core losses?
 - Lower switching frequency
 - Lower peak currents
 - Increase core size
 - Change core material

- AC-losses in a wire structure
- How to optimize skin effect?
 - Use flat wire or Litz wire to increase skin

- How to optimize Proximity effect?
 - Optimize winding structure to minimize interaction and parasitic effects.

6

INDUCTOR SELECTION: Rated Current

Rated Current : I_R

Electrical Properties:

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	10	μН	±20%
Rated current	∆T = 40 K	l _R	7.1	Α	max.
Saturation current	LΔL/L1 < 10%	Isat	10.5	Α	typ.
DC Resistance	@ 20°C	R _{DC}	0.013	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.021	Ω	max.
Self resonant frequency		fres	21	MHz	typ.

INDUCTOR SELECTION: Rated Current

- Impact of the setup
- Rated current is link to the R_{DC} of the Inductor

Con	ΔT @ 9 A	
- WE-LHMI 7030 - 74437346220 - inductor on wires - huge clamps		30,9 K
- WE-LHMI 7030 - 74437346220 - inductor on wires - small clamps		35,8 K
- WE-LHMI 7030 - 74437346220 - inductor on PCB - recommended pad design		40,0 K

INDUCTOR SELECTION: Saturation Current

- Saturation current definition
 - The current that causes an inductance drop compared to it initial inductance value. In most cases for our inductors a drop of 10% 30% is specified. Depending on inductor core material.

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	10	μH	±20%
Rated current	$\Delta T = 40 \text{ K}$	l _R	7.1	Α	max.
Saturation current	LΔL/LI < 10%	l _{sat}	10.5	Α	typ.
DC Resistance	@ 20°C	R _{DC}	0.013	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.021	Ω	max.
Self resonant frequency		f _{res}	21	MHz	typ.

INDUCTOR SELECTION: Saturation Current

Isat = Depend on the definition

INDUCTOR DESIGN: Standard design

WE-SI, WE-FI

Solenoid coil : NiZn / MnZn

■ WE-SD,WE-Tix, PD2

- Solenoid coil + Shielding : NiZn / MnZn
 - WE-PD, WE-TPC, WE-PD2SR
- Solenoid coil + Semi-shielding : NiZn / Metal Alloy
 - WE-LQS, WE-LQSH

INDUCTOR DESIGN: High Current

Flat wire Construction

- WE-PERM / MnZn/ NiZn and Superflux core
- WE-PDF, WE-HCI, WE-HCF, WE-HCM
- Rdc as low as 0,114mΩ
- Saturation current as high as 125A

Round wire molded Construction

- Iron Powder and Metal Alloy core
- WE-LHMI, WE-XHMI, WE-MAPI, WE-PMCI
- Rdc as low as 0,510mΩ
- Saturation current as high as 120A

Litz wire Construction

- MnZn core
- WE-HCF Litz
- Rdc as low as 15,3mΩ
- Saturation current as high as 16,3A

WÜRTH ELEKTRONIK

Capacitor: Equivalent Circuit

Output capacitor: RMS current

$$I_{Lmax} = Iout + \frac{\Delta IL}{2}$$
 $I_{Lmin} = Iout - \frac{\Delta IL}{2}$

$$I_{Lmin} = Iout - \frac{\Delta IL}{2}$$

$$I_{L,rms} = \frac{\sqrt{12.I_{out}^2 + \Delta I^2}}{2\sqrt{3}} = 2,013A$$

$$I_{C_{,RMS}} = \sqrt{I_{L_{,RMS}}^2 - I_{out}^2}$$

$$I_{C_{\perp}RMS} = 228 \, mA$$

Input capacitor: RMS current

•
$$V_{in} = 24V$$

•
$$V_{out} = 5V$$

•
$$I_{out} = 2A$$

•
$$F_{sw} = 535 \, kHz$$

$$D = \frac{V_{out}}{V_{in}} = 0.208$$

 $L = 10 \mu H for 40\% ripple$

Max intput ripple voltage 50 mV

$$\Delta VC = 50 \ mV$$

$$I_{sw,rms} = \frac{\sqrt{D(12.I_{out}^2 + \Delta I^2)}}{2\sqrt{3}}$$

$$I_{in} = \frac{D * I_{out}}{\eta}$$

$$I_{C_{,RMS}} = \sqrt{I_{sw_{,RMS}}^2 - I_{in_{,DC}}^2}$$

$$I_{C\ RMS} = 793\ mA$$

 $@5A ext{ output current}$ $I_{C ext{ RMS}} = 2.367 ext{ mA}$

Capacitor: Ripple current

 Ripple current can be critical, shortening of lifetime, and for too high ripple explosive failure,
 blown vent and electrolyte leakage

Ceramic Capacitors

Lowest ESR /mostly have no ripple current limitation

Film capacitors

Low ESR, but ripple current can cause damage

Electrolytic Capacitor: Polymer Vs Electrolytic

- Aluminum- Electrolytic-Capacitor
 - higher voltage ratings available (up to 600V)
 - Price advantage in same capacity and voltage rating
 - More capacitance per cm3

- Polymer- Electrolytic-Capacitor:
 - smaller ESR as an Alu-Cap >> higher allowed ripple current
 - No dry-out behavior like Alu-Cap (solid electrolytic)
 - higher expected lifetime / load life

Voltage Price Lifetime ESR Ripple current No Dry Out

Electrolytic Capacitor: Polymer Vs Electrolytic Load life calculation

Electrolytic Capacitor: Polymer Vs Electrolytic Load life calculation

Temperature	Poly-Cap	Alu-Cap	factor Poly vs. Alu	Alu-Cap	factor Poly vs. Alu
105 °C	2.000 h	2.000 h	1,00	5.000 h	0,40
95 °C	6.300 h	4.000 h	1,58	10.000 h	0,63
85 °C	20.000 h	8.000 h	2,50	20.000 h	1,00
75 °C	63.000 h	16.000 h	2,94	40.000 h	1,58
65 °C	200.000 h	32.000 h	5,25	80.000 h	2,50
55 °C	630.000 h	64.000 h	8,84	160.000 h	3,94
45 °C	2.000.000 h	128.000 h	14,62	320.000 h	6,25

Contactgegevens

- Alex Snijder
- Field Application Engineer
 - alex.Snijder@we-online.com
 - **(+31)** 06 10 98 48 25
- Wurth Elektronik Nederland B.V.
- Het Sterrenbeeld 35, 5215 MK 's-Hertogenbosch
- Standnummer: