

Wireless Power Transfer

dr ir P.J.van Duijsen

P.J.vanDuijsen@tudelft.nl

info@caspoc.com

Learning by Simulation

TU DELFT DCE&S Simulation Research The Netherlands

Inhoud

- Verschillende topologien:SS, PP, SP, PS
- Berekening spanning, stroom en vermogen in de overdracht
- Transmitter en Receiver coils
- Berekening koppelingsfactor
- Berekening efficiency

Magnetic coupling

Voltage transfer depending on k

Small k gives nearly no secondary voltage

Input power factor <>1, no power transfer

Input power factor=1, power transfer

Power factor secondary = 1 Load=R

Compensation on secondary side

Output current even higher????

Do not forget about ratio Lprim: Lsec

Still only winding resistance losses

Again only winding resistance losses

Apart from Ferrite losses, only winding

loss

Conclusie

- Kan het?
- Efficiency?
- Vragen?

