26.4.2022

ELECTRIC CHARGING SYSTEM WITH SUPER CAPACITORS FOR MOBILE CONSUMERS

Supported and sponsored by:

Power Electronics & Energy Storage event 14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE EVENT 2022

Problem: Battery technology today

- Based on a chemical reaction => inherently slow, time consuming => causing dead time,
- Burden for the environment and the grid,
- No alternative to combustion engines (power density),
- charging from 0% to 100% takes at least 1 hour.

large grid load

Solution: deploying latest Supercapacitors with SwissCapTech

- based on a **physical process**, thus extremely fast
- very low environmental impact and no strain on the power grid
- alternative to combustion engines => extremely high performance possible
- with SwissCapTech: charging from 0% to 100% in 2-6 minutes

The SwissCapTech solution

A new and disruptive technology which enables large amounts of electric energy to be transmitted from a charging station to a mobile energy storage within a very short time.

Difference: Converter vs. Energy Storage

Conventional chargers as fast as the grid permits Li-Ion Capacitors Very fast independent Energy Transmission

Regular balancing Systems

Cell balancing circuits a) resistor, b) Zener diodes, c) switched-resistor, d) DC/DC converter

hcyncn 🛛 🗖 🖉

SWISSCAP

SuperCaps charge SuperCaps

- Supercapacitors store energy through a physical process
- Chemical batteries store energy through a chemical process
- Supercapacitors can transfer energy at high charging rates

haunan eeee

SuperCap as Core Element

- Supercapacitors charge Supercapacitors
- Always in the optimal range
- Balancing without losses

Always in the optimal range

Combination of the Li-Ion Capacitors

hcyncn 🛛 🖉 🖉

SWISSCAP

14 juni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

Batteries vs. Li-Ion Caps

	ENERGY-C (EDLC)	ENERGY-C (LIC)	LIB		
ANODE	Activated carbon	Activated carbon	LiCoO ₂ / LiMnO ₄		
CATHODE	Activated carbon	Graphite/Li-ion doped	Graphite/Li-ion doped		
ELECTRIC STORAGE PRINCIPLE	lon-adsorption	Anode: lon-adsorption Cathode: lon-adsorption and charge transfer	Reversible redox reaction		 Aluminum I EDLC Lithium-Ion Lithium-Ion Ni-MH Batt Lead-Acid I
TEMPERATURE RANGE	−40 ~ 85 °C	–25 ~ 70 °C	−25 ~ 45 °C	5 1000 -	
MAX. RATED VOLTAGE	2.3 ~ 3 V	3.8 ~ 4.2 V	3.7 ~ 4.2 V	A WIK	
MAX. CHARGE RATE	approx. 1,000 C	approx. 100 C	0.5 ~ 1 C (normal)	-isc 99 100 –	
SIZE/WEIGHT	low	low	high	Cower	
CHARGE-/DISCHARGE-CYCLES	More than 500,000	50,000 ~ 500,000	1000		
SELF DISCHARGE	>30 % after 2,000 h	<5 % after 2,500 h	<5 % after 2,500 h	0,1 1 10 100 Energy density Wh/kg	1000
SAFETY	safe	safe	depending on structure an d material		
ENERGY DENSITY	(5 ~ 7 Wh/kg)	(40 ~ 90 Wh/kg)	(~250 Wh/kg)		

haynan eeee

Benefits of SwissCapTech solution

• The charging station as a buffer:

- Investments in the grid can be avoided,
- SwissCapTech-System combine mobile- and charging application
- Minimal waiting time = "dead time killer",
 - Transport systems.
 - Construction Sites
 - Electric Tools
 - Etc.

- Mobile power consumers can be used almost all the time:
 - No planning of charging times, no replacement batteries, no battery swapping.

Why the Swisscaptech Solution?

- A proven and tested technique that works
- Support to create an application together
- Collaboration delivers results faster and more useful applications quickly
- The capacity of our energy network can hardly follow the growth of applications
- There are similar challenges all over Europe

Technology – IP Swisscaptech

- Step-by-step charging to protect the charging electronics and the charging cables
 - Patent 1: Method and system for charging mobile ultracaps (P26563CH00)
- Balancing / switching the cells from parallel to serial
 - Patent 2: Method and system for maximum capacity utilization (P26617CH00)
- Very fast charging process
 - Patent 3 : Quick charging process and unit (P26834CH00)

SWISSCAPTECH

Charles Rippert

charles.rippert@swisscaptech.ch

www.swisscaptech.ch

+41 76 461 50 90

Alexander Schedlock

A.Schedlock@Jianghai-Europe.com

+49 174 2345224

Marcel van Venrooij <u>Marcel.vanVenrooij@Heynen.nl</u> +31 6 12 19 24 34

ENERGY STORAGE

EVENT 2022

Power Electronics & Energy Storage event

Thanks for your attention.

Are there any Questions?

Power Electronics & Energy Storage event 14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE EVENT **2022**