

A Battery-fed Dynamic Voltage Restorer for Wide-Range Sag/Swell Mitigation

Dr Lorenzo Ceccarelli, PhD Postdoc EPE Research Group, TU/e

Power Electronics & Energy Storage event 14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE EVENT **2022**

Outline

	Introduction	
	Proposed DVR Layout	
è	Modeling and Simulation	
B	Experimental Setup	TU/e
	Conclusion	PROGRESSUS
		Power Electronics & Energy Storage event POWERONICS ENERGY STORAGE EVENT 2022

EV Charging Infrastructure

ECSEL PROGRESSUS Use Case 2

- 65% reduction of peak power
- 20% lower cost
- 20% smaller volume
- 30% lower losses (WBG)
- Need for a protective interface with the grid (PQ)

4 juni 2022 | 1931 Congres<mark>c</mark>entrum 's-Hertogenbosch

https://www.ecsel.eu/projects/progressus

Voltage Disturbances on the LV Grid

- Voltage *sags* and *swells* are among the most common **PQ** issues
- Mostly due to remote faults on the MV side
- Can cause interruptions and malfunctioning

Sags and Swells

ГU/е

Dynamic Voltage Restorer (1/2)

- An established and cost-effective way to mitigate voltage disturbance on the load side
- **Dynamic voltage restorers** (DVRs) inject voltage in series with the source to compensate for voltage sags/swells

• Our requirement: 0.2 to 2 p.u. for 5 ms to 60 s (wide range)

EVENT 2022

ΓU/e

FCTRONICS

Dynamic Voltage Restorer (2/2)

With energy storage

- Works independently from the grid 🙂
- Wider compensation range/time 🙂
- Mainly active power
- Relatively expensive 😕

Without energy storage

- Taps energy from the grid
- Lower compensation range/time ⊗
- Mainly reactive power
- Relatively cheap 🙂

J. G. Nielsen and F. Blaabjerg, "A detailed comparison of system topologies for dynamic voltage restorers," IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1272–1280, Sep. 2005.

Dynamic Voltage Restorer (2/2)

- \sim Can tap power directly from the battery (2L) \odot
- Reduced power rating of dc-stage ⁽²⁾
- Power consumption in standby mode 😕
- Efficiency can be further improved

ſU/e

PROGRESSUS

J. Wang, Y. Xing, H. Wu, and T. Yang, "A Novel Dual-DC-Port Dynamic Voltage Restorer With Reduced-Rating Integrated DC–DC Converter for Wide-Range Voltage Sag Compensation," IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7437–7449, Aug. 2019.

Possible DVR Improvements

- Main drawback: power consumption in idle mode (series-connected converter)
- Efficient design with wide-bandgap power switches
- Further improve DC-stage design
- Power density (relevant to our case study)
- Multi-functional PQ converter

Computer-aided design workflow based on modeling and simulation

Outline

La Introduction	
Proposed DVR Layout	
A Modeling and Simulation	
Experimental Setup	TU/e
∎∕ [□] Conclusion	PROGRESSUS
	Power Electronics & Energy Storage event

Control Technique (1/2)

In-phase compensation technique

- Minimized injected voltage amplitude
- Phase jump is not compensated

 $V_{g,abc}$

 V_{da}^{g}

 $V_{s,abc}$

 $V_{l,abc}$

e

ENERGY STORAGE

EVENT 2022

PROGRESSUS

juni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

1:2

_ V_{l,abc}

Control Technique (2/2)

Asymmetrical SVPWM •

 $0 \le l \le 2$

β

 $\sqrt{3}$

Outline

La Introduction	
Proposed DVR Layout	
A Modeling and Simulation	
Experimental Setup	TU/e
∎∕ [□] Conclusion	PROGRESSUS
	Power Electronics & Energy Storage event Power Electronics & Energy Storage ENERGY STORAGE EVENT 2022

Voltage Sag Simulation – 0.2 p.u. / VL= 500 V

juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

Voltage Swell Simulation – 2 p.u. / VL= 500 V

4 juni 2022 | 1931 Congres<mark>c</mark>entrum 's-Hertogenbosch

Power Loss Modeling

•

۲

Simulation Results

- DC stage only operates when >60% power is required at low battery charge
- 45% lower power rating for DC stage

- Simulated peak efficiency at 99.17% (semiconductor + inductor losses)
- Efficiency drops as battery charge reduces

Comparative Analysis

Proposed Layout (SiC MOSFETs)

DC/DC + 2 level (SiC MOSFETs)

Power Electronics & Energy Storage event

LECTRONICS EVENT 2022

ENERGY STORAGE

Comparative Analysis - U_L =680V

- No significant difference between SiC topologies
- IGBT shows worse performance
- DC-stage losses are minimum

Comparative Analysis - U_L =470V

- Proposed topology has better performance if battery SOC is lower
- DC-stage losses are higher in all the other designs
- Interleaved dc-stage performs better

Outline

La Introduction	
Proposed DVR Layout	
A Modeling and Simulation	
Experimental Setup	TU/e
■ Conclusion	PROGRESSUS
	Power Electronics & Energy Storage event

30 kVA DVR Prototype

• Power density ~3.3 kW/dm³

PROGRESSUS

Test Setup

- 15 kVA grid emulator
- 30 kVA series transformer
- 30 kW DC source / battery emulator
- dSPACE control interface

Experimental Results (1/3)

Voltage Sag – 0.2 p.u. / VH= 300 V

Experimental Results (2/3)

Voltage Swells – 2 p.u. / VH= 300 V

Experimental Results (3/3)

Voltage Swells – 2 p.u. / VH= 300 V

4 juni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

Outline

La Introduction	
Proposed DVR Layout	
A Modeling and Simulation	
Experimental Setup	TU/e
□∕□ Conclusion	PROGRESSUS
	Power Electronics & Energy Storage event

Conclusion

- Concept and implementation of an all-SiC DVR for wide-range sag/ swell compensation
- Improved layout
- Simulation-driven design procedure
- Simulation and early test results shows promising performance

Future Work

- Full validation of converter performance
- Additional PQ features (harmonic mitigation)

Thank you for your attention!

Questions?

Contact:

Lorenzo Ceccarelli, PhD Postdoc

l.ceccarelli@tue.nl

TU/e

Power Electronics & Energy Storage event 14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE EVENT **2022**