Re-imagining Volta's Battery Dream: A Twente Experience

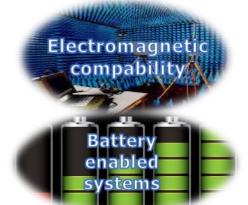
Dr.ir. Prasanth Venugopal, Asst. Professor University of Twente, Power Electronic & EMC group

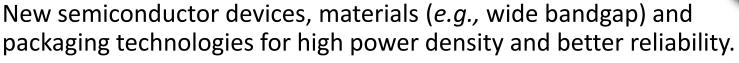
Power Electronics & Energy Storage event 14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE EVENT 2022

Outline

- Brief history PE group
- PE group
 - Staff members
 - Research themes
 - Capabilities
 - Battery Research

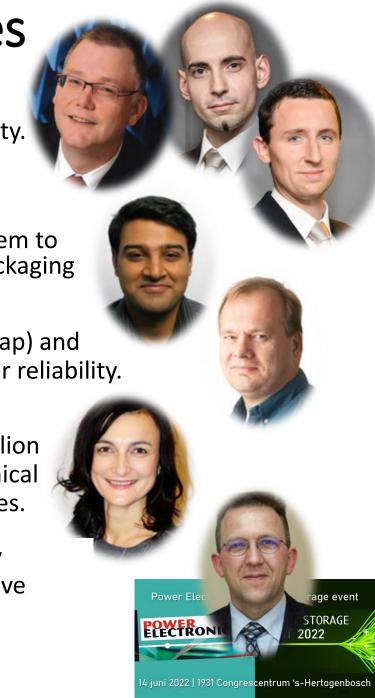
Brief History


- PE group set up by Prof. Ferreira and Prof. Leferink in 2019
 - Originally attracted by potential battery R&D site @ technology base Twente
 - ...May 2021...


PE Group, Research Themes

Modelling of conducted & radiated EMI and power quality. Development of test techniques to achieve immunity on PCB & system level.

Cell-level power electronics in battery management system to extend battery lifetime. To improve reliability by new packaging technologies and EMC solutions.



Decentralized, bottom-up, off-grid solar systems for 3 billion people living in energy poverty. Sustainable, socio-technical solutions: socio-cultural context, business models, policies.

Accurate measurements of electrical power flow/energy efficiencies in electrical systems. New concepts to improve accuracy, explore fundamental limitations and devise calibration methods.

Twente Centre for Advanced Battery Technology

Strategic Focus
Points

Next gen. materials & cells

Energy-efficient packs & systems

Advanced manufacturing

Smart applications

Organisation

PI: Mark Huijben (Fac. TNW)

PI: Prasanth Venugopal (Fac. EEMCS)

PI: Sebastian Thiede (Fac. ET)

PI: Maarten Bonnema (Fac. ET)

business development: Dirk van Asseldonk

>100 multidisciplinary researchers from 4 different UT faculties in project driven activities

Hosted by: Centre for Energy Innovation (SBD) & MESA+

Infrastructure

Equipment for material processing and characterization

Pilot lines for cell and pack manufacturing

Test facilities for lab/industrial cells and packs

Battery Research Projects at UT PE

- Interreg NW-Europe STEPS Project
 - Advising >200 e-storage local SMEs for new entrants
 - Market pull effects in NEW for new e-storage solutions
 - Implementing a 2 voucher based support program to transcend TRL $5/6 \rightarrow 7$

- OPoost EU Accumulate (Twinx, Van Raam, Brekr, DNV GL, Contour, Twente Safety)
 - Electrochemistry, Cell Quality (IMS)
 - Electronics, BMS and Safety (PE)

STEPS Project & Experiences

Battery cells

Battery performance evaluation

EMC

Power electronics

Testing and certification

Exergy

Watt4Ever Octave Voltfang Power&Energy
OXTO
MC Energy
SolarTechno

OXTO SolarTechno

MC Energy Voltfang OXTO

Challenges:

- Improve interfacial transport at interface cell membrane
- Improve cell performance

Challenges:

- How to determine the SOH
- Quicker procedure for battery characterization
- What is the current state of health of a 2nd life battery as obtained from an electric vehicle
- Pros & cons of connecting multiple pack parallel after (AC) or before (DC) inverter

Challenges:

- Will the system pass the EMC regulations
- EMC and thermal issues
- Do we meet the EMC standards
- Advice on EMC of BMS

Challenges:

- Are the power electronics within specs?
- Thermal issues with the power electronics
- Design of a micro inverter

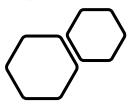
Challenges:

- Will the product pass the standard
- Read-out problems with current sensor for testing of the (complete) system
- Are the standards met

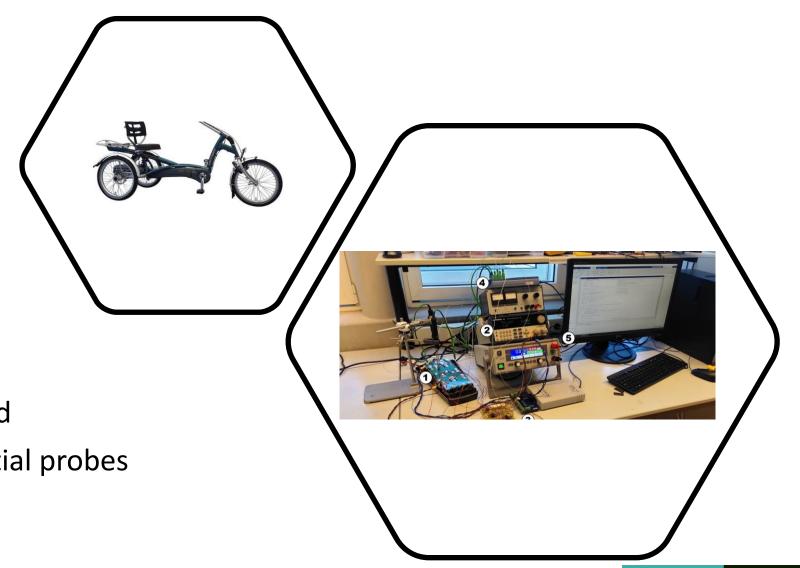
Note: a SME can have challenges in multiple technical topics.

Not listed:
OTG Energy, Zebra,
Elestor

Accumulate In-Situ Measurements



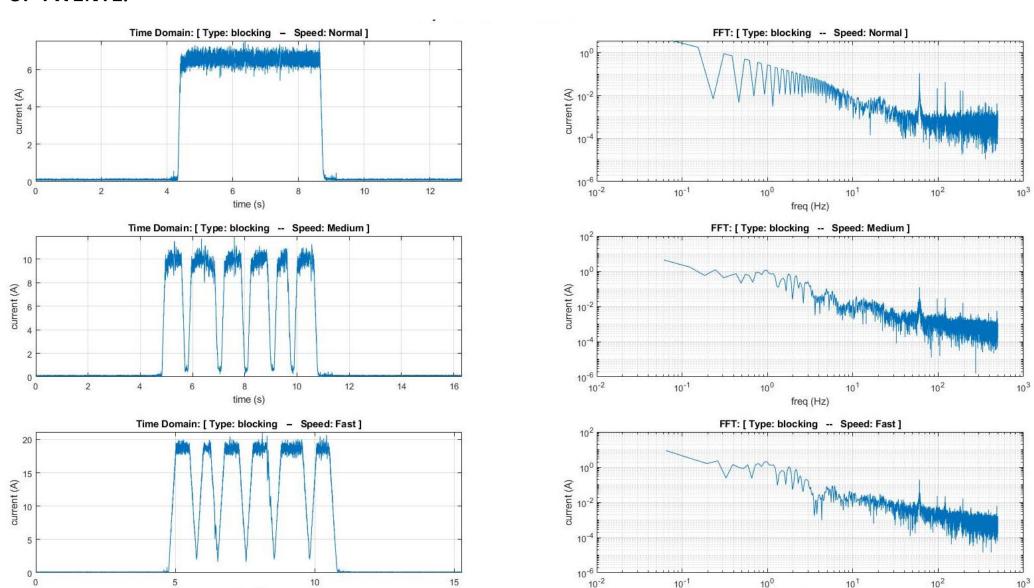
Aim: To study the influence of driving cycles on degradation using both in-situ and laboratory-based simulations


Researcher: Ir. Ing. Maarten Appelman

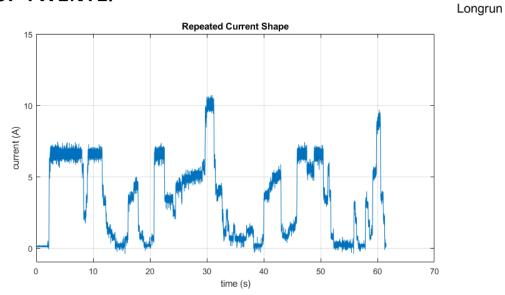
Accumulate Measurement Setup

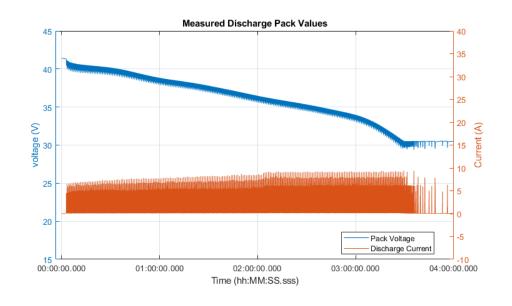
- Battery pack
- Programmable DC-load
- Data logger + differential probes
- Thermocouple
- SCPI + PS API

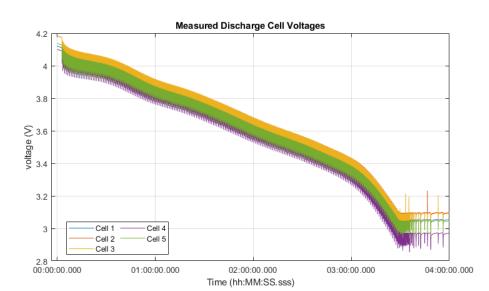
time (c)

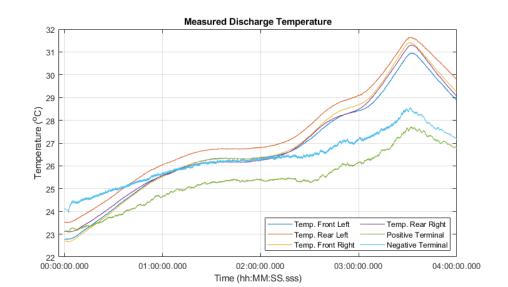

Accumulate – in situ measurements

Power Electronics & Energy Storage event


14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch


ELECTRONICS EVENT 2022


ENERGY STORAGE



Accumulate – in situ measurements

Accumulate Results

Heating of cells is not just related to average temperature

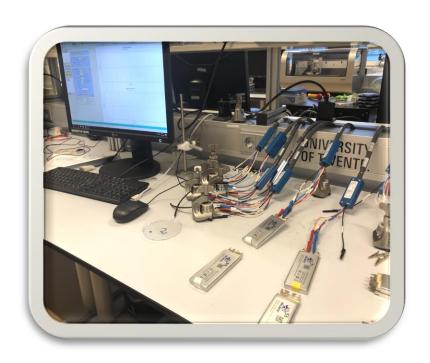
First hypothesis that SOC can influence rate of temperature rise

 The discharge profiles with relatively long cool-down periods, show significantly lower maximum temperatures.

Second Life Batteries

UNIVERSITY OF TWENTE.

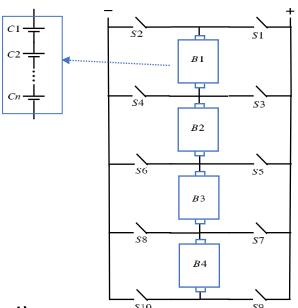
- Battery Echelon Utilization.
- Different screening and cell selection methods for second life batteries.
- Battery SOH measurement (Fast and accurate methods for testing the state of health of used battery).
- Laboratory study to find a new definition on battery SOH.
- Remaining Useful Life Prediction (RUL) methods for SLBs based on different application.


Ph.D. Researcher: Reza Azizighalehsari

Cell Selection Criteria for Superbike

https://electricsuperbiketwente.nl/

- Qualification testing to design a battery pack for a fully electric racing motorcycle.
- Obtain the best performance from the cells.
- To avoid impedance mismatching between the cells inside the battery pack.
- Finding optimal configuration and cells sequence.

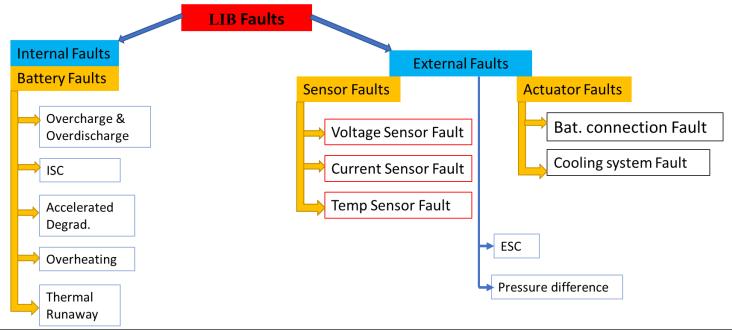


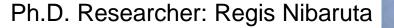
Highly Integrated Battery Electronics

- Multi-level AC output can be achieved by taking advantage of power switches of reconfigurable batteries and their customized output voltage
- The charger on the grid or inverter can be eliminated
- Extra battery cell balancing circuitry can be eliminated
- The output voltage THD can be reduced
- Smaller filter is required
- Low voltage MOSFETs are used

Challenges:

- High number of switches (Application dependent trade-offs)
- Complex control (multi-layer decentralized controller can be employed)




Battery Safety:

UNIVERSITY OF TWENTE.

Fault Diagnostics and Mitigation

- Understanding of Faults mechanism serves as a foundation for developing faults diagnostic methods
- Li-ion battery faults are usually categorized into internal and external faults:

Top Sector Infrastructure: Battery Lab

- Battery Laboratory Equipment
 - 1. Keysight Impedance Analyzer (E4990A)
 - 2. Solartron EIS for Battery Measurements (Potentiostat)
 - 3. Battery Cell Cycler: Arbin Instruments LBT 5V-30A-8CH
 - 4. Chroma DC Electronic Loads
 - 5. Battery Climate Chambers (Hielkema)
 - 6. Battery Module Cycler (Almost finalized)
 - 7. BMS, battery emulators etc......

Battery Testing Capabilities

UNIVERSITY OF TWENTE

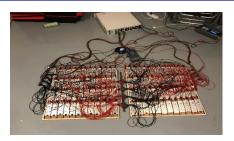
```
C/M/P Performance Testing
     Module/pack cycler: up to 60V, 50A, 4 channels
     BMS evaluation (Cell simulator: 5V, 12 channel)
     Cyclic ageing, for varying load cycles (Max 1500V, 600A, 6kW)
     Charge and discharge (Max 1500V, 600A, 6kW)
     Performance testing incl. SOC, SOH, roundtrip efficiency etc.
     Climate chamber: (-20 to +80 degC)
C/M/P EIS - Electrochemical Impedance Spectroscopy
     Range: 0.01 mHz - 1MHz, 100V, 3A
     Impedance testing and analysis (detailed behavior, ageing effects,
     etc.)
```


Battery Diagnostics and Prognostics

WORKSHOP IN-PERSON II ONLINE

Motivation:

- Create awareness about R&D within the field of power electronics, measurements, and the battery ecosystem.
- Bridge the gap between knowledge institutions and the battery industry in the Netherlands.
- Train industry partners from the Netherlands and north-west Europe on battery performance and testing within the ambit of the STEPS project.
- Future collaboration between various stakeholders and the University of Twente.


Advanced Battery Charging/ Power Electronics

- Research Topics:
- Cell → Module → Pack based Power Electronics
- Battery Second Life Sorting and Utilization
- Battery Performance Measurements: SOC, SOH, SOP → Accurate and Fast
- Advanced BMS and Reconfigurable Batteries
- Modelling and Impact of Ageing/ Degradation → Module-to-Pack
- Extension to Chemistry-Agnostic Impact Assessment

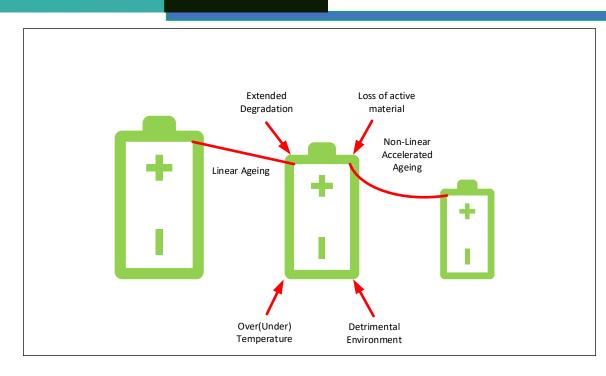
- Ph.D. 1: Reza Azizighalehsari Echelon Utilisation of Automotive LiB Packs for a Second Life in Grid
- Ph.D. 2: Reyhaneh Eskandari Advanced BMS systems in Transportation
- Ph.D. 3: Regis Nebaruta (Ukraine) Battery Safety and SOH
- Ph.D. 4: Ning Zhansheng* Modelling & Impact of Ageing in LiB (*Sept 2022)
- Several MSc. + BSc. Researchers

Key Academic

N/W

UNITED KINGDOM - CHINA - MALAYSIA

N/W



Battery Charge For Thought Quotes:

- 1. Battery is a <u>Deterministic</u> system and must be "measurable accurately"
- Non-linear ageing is not comparable to a bucket with holes; but a <u>Deflatable</u>
 <u>Balloon</u> with holes

