WE Backup Your Application: Hot Swappable Supercapacitor Backup Solution

Power Electronics & Energy Storage event

14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

ENERGY STORAGE EVENT 2022

2

<u>Agenda</u>

- Short Roundup about Supercapacitors
 - Classification of Supercapacitors
 - Model Parameters and Performance
 - Charge-, Discharge and Frequency Behavior
- WE Backup Your Application
 - Hot Swappable Supercapacitor Backup Solution
 - Overview and General Information
 - Design-In Process and Lifetime
 - Performance of the Complete Solution

Classification of Capacitors

Types of Supercapacitors based on design of electrodes:

Double Layer Capacitors

Electrodes: carbon or carbon derivatives

Pseudocapacitors

- Electrodes: oxides or conducting polymers (high faradaic pseudocapacitance)
- Hybrid capacitors
 - Electrodes: special electrodes with significant double-layer capacitance and pseudocapacitance

Supercapacitors vs. Batteries and Capacitors

Capacitors

- Very fast charging and discharging (« sec)
- Very high power output
- Very low energy capacity

Supercaps

- **Fast charging** and discharging (min sec)
- High life cycle (\approx 500,000 cycles)
- High power output
 - ≈ 10 times higher than Li-ion battery
- Low energy capacity
 - \approx 30 times lower than Li-ion battery
- Energy: 0.002 Wh 0.04 Wh
- Power: 36 W 90 W

Batteries

- Long charging time (hours)
- High energy capacity
- Low power output
- Energy: 1.4 Wh
- Power: 6 W

ECTRONICS

Power Electronics & Energy Storage event

ENERGY STORAGE

Parameters and Performance

R_{ESR}

*R*_{Leak}

Basic Parameters:

- *U_r*, Rated Voltage:
 - is not determined by the equivalent circuit but by electrochemistry (Decomposition Voltage)
 - − Non-Aqueous Electrolyte (typ.): $\approx 2 V \dots 3V$
 - − Aqueous Electrolyte (typ.): $\approx 1.5 V$
- C => Capacitance
- *R_{ESR}*=> ESR
- R_{Leak} => Leakage
 - Influence on charge storing capabilities ($R_{Leak} \approx 10 \text{ k}\Omega \dots 1 \text{ M}\Omega$)

Performance Parameters:

Energy storage capacity:

$$E = \frac{1}{2} \times \mathbf{C} \times \mathbf{U}_r^2$$

• Maximum Power output:

$$P_{max} = \frac{\boldsymbol{U}_r^2}{4 \, \boldsymbol{R}_{ESR}}$$

Characteristic R-C Time:

$$\tau = \mathbf{R}_{\mathbf{ESR}} \times \mathbf{C}$$

ini 2022 | 1931 Congrescentrum 's-Hertogenboscl

Charge and Discharge Behavior

14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

<u>Agenda</u>

- Short Roundup about Supercapacitor
 - Classification of Supercapacitors
 - Model Parameters and Performance
 - Charge-, Discharge and Frequency Behavior
- WE Backup Your Application
 - Hot Swappable Supercapacitor Backup Solution
 - Overview and General Information
 - Design-In Process and Lifetime
 - Performance of the Complete Solution

2022 1931 Congrescentrum 's-Hertogenbosc

Specification of the application

Schematic

WURTH

KTRONII

MORE THAN

YOU EXPEC

ENERGY STORAGE

EVENT 2022

Specification of the application

Efficiency

- 24V input to output rail
- Step-Up mode V_{out}
 - V_{out} = 12 V
- Step-Down mode V_{CAP}
 - 4 Supercapacitors
 - V_{CAP} = 10.6 V
- No direct supply from V_{CAP}
 - V_{CAP} < V_{out}
- f_{sw}
 - 450 kHz
- Input current limit
 - I_{max_charge} = 2,5 A
- Constant Power Discharge
- Supply the load and charge the Supercapacitor

Charger Efficiency vs V_{CAP}

4 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

How to choose the Supercapacitor?

- Backup is defined due to the application
- The four steps of design-in
 - <u>Choose the mode of discharge</u>
 - Constant Power / Constant Resistance / Constant Current
 - <u>Calculate the capacitance (operating time, output power, output current)</u>
 - 30 W => 12 V @ 2.5 A for 15 sec.
 - E = P * t = 30 W * 15 s = 450 J

•
$$C = 2 \cdot \frac{E}{V_1^2 - V_2^2} = 2 \cdot \frac{450 \, J}{10.6 \, V^2 - 2V^2} = 4.2 \, F$$

- Identify the suitable charging process
 - Constant Current / Constant Power / Constant Voltage
- <u>Calculate charging current</u>
 - Highest possible current for the LTC3351 => 6,4A

How to choose the Supercapacitor?

Discharging process

14 juni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

How to choose the Supercapacitor?

Charging process: constant voltage versus constant current

Constant voltage

- Easy to implement
- More time needed to full charge

Constant current

- More complex
- Faster charging

Choosing the right Supercapacitor

14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

Supercapacitor Bank

Schematic

- 4 Supercapacitors in series connection
- $E_{total} = \frac{1}{2} * C_{total} * U_{VCAP}^{2}$
 - C_{total} = 12,5 F
 - $U_{VCAP} = 10.6 V$ $\Rightarrow E_{total} = 702.25 J$
- Max. Power = $U_r^2 / 4 * (4 * ESR)$
 - V_{CAP} = 10.6 V
 - ESR for one Supercapacitor = 2.23 mΩ
 - Max. Power = 3053 W
- No balancing on board required
 - LTC3351 integrated active stack balancer
- Additional circuitry is for discharging the bank

Supercap_Bank_LTC3351_Rev2020A

LECTRONICS

EVENT 2022

uni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosc</mark>

Supercapacitor Bank

PCB Lay-out

- 4 Supercapacitors in series connection
- $E_{total} = \frac{1}{2} * C_{total} * U_{VCAP}^{2}$
 - C_{total} = 12,5 F
 - $U_{VCAP} = 10.6 V$ $\Rightarrow E_{total} = 702.25 J$
- Max. Power = $U_r^2 / 4 * (4 * ESR)$
 - V_{CAP} = 10.6 V
 - ESR for one Supercapacitor = 2.23 mΩ
 - Max. Power = 3053 W
- No balancing on board required
 - LTC3351 integrated active stack balancer
- Additional circuitry is for discharging the bank

Balancing of Supercapacitor

- Worst Case Example:
 - Two in series connected capacitors with a rated capacitance of 10 F (tol.: -10%, +30%)
 - Rated voltage of 2.7 V are charged at 5.4 V
- Following equations are need for the calculations:
 - $U_g = U_1 + U_2$
 - $U_2 = \frac{q}{c_2}$ and $U_1 = \frac{q}{c_1}$

• $\rightarrow U_1 = \frac{5.4 \text{ V}}{(1.44+1)} = 2.21 \text{ V}$ • $\rightarrow U_2 = \frac{5.4 \text{ V}}{(\frac{1}{1.44}+1)} = 3.19 \text{ V}$ (Caution, Overvoltage!)

Balancing of Supercapacitor

Passive versus active balancing

Passive Balancing

- If operated primarily under DC conditions
- Low cost

R_{b,p}

Balancing

Speed

Losses

- Slow balancing
- High losses
- Balance Resistor: $R_{b,p} \approx \frac{1}{10} \times \frac{U_r}{I_{Leak}}$
- Typically $R_{b,a} \approx 1 \mathrm{k}\Omega \dots 100 \mathrm{k}\Omega$

Balancing Resistors, $R_{b,p}$

Active Balancing

- If often charged and discharged
- High cost
- Fast balancing Low losses
- Balance Resistor:
 - $R_{b,a} > R_{b,p}$
- Typically $R_{b,a}$ $\approx 1M\Omega \dots 10M\Omega$?

OPAMP

Shunt Resistors

(prevents oscillation, low Ω)

Power Electronics & Energy Storage event ENERGY STORAGE LECTRONICS EVENT 2022

4 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

Lifetime of Supercapacitor

- Supercapacitors lose capacitance as they age
- ESR will rise over the lifetime

Lifetime of Supercapacitor

- Lifetime for 4 Supercapacitors in series
- V_{CAP} = 10.6 V
 - Voltage on a single cell => 2,65 V
- Defined Mission Profile
 - Max. Temp = 40 °C
 - Max. Voltage = 2.65 V
- We use 4 * 50 F Supercapacitors in series
 - C_{total} = 12,5 F
 - With a tolerance of $-10\% = C_{total} = 11.25 F$
- After 12 years => C_{total} = 5.6 F
 - Calculated capacitance 4.2 F
 - Lifetime definition -30% capacitance and 2x ESR
- Lifetime depends on voltage and temperature
- Current increases self heating

		Mission Profile									
		Time [h]		Temp. [°C]		Vol	tage [V]		Model		
		10		40			2.65	DC V	DC Voltage Model		
		2		40			1.	DC V	DC Voltage Model		
		6		25		0		DC V	DC Voltage Model		
		6		25		0		DC V	DC Voltage Model		
Remaining Rel. Cap. [%]	100						,				
	90									_	
	80										
	70										
	60					_					
	50										
	40			<u> </u>							
		0 2	2 4	4 6	<u>ј</u> т:	8	3 1	0	12	14	
		lime [Years]									

Lifetime of Supercapacitor

- Same Mission Profile
- Different cell voltage with 2.3 V

- Same Mission Profile
- Different temperature at the Supercapacitor with 65 °C

Backup Solution

14 juni 2022 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

Backup Solution

Backup Solution Real World

28 |

Performance Charging

With load

Performance Charging

Without load

Performance Charging / Discharging

31

WURTH ELEKTRONIK MORE THAN

YOU EXPECT

Design and Application Review

Summary

- Backup Solution with a size of 10 cm x 18.5 cm
 - 3.94 inch x 7.3 inch
- Vin 24V and Backup voltage 12 V
- Output Power 30 W => 12 V @ 2.5 A
- Eval-Board and Software for LTC3351 available
- Support Note for Design-In Process
- Application Note for the whole Process
- Currently working on a Supercapacitor Bank Calculation Tool
- WE support you in your Design

Thanks for your attention!

- Würth Elektronik Nederland België
- Raf Vleugels FAE <u>raf.vleugels@we-online.com</u>
- Alex Snijder FAE <u>alex.snijder@we-online.com</u>

Power Electronics & Energy Storage event

14 juni 2022 | 1931 Congrescentrum 's-Hertogenbosch

ENERGY STORAGE EVENT 2022