Inverters & Motor Drive Analysis CN Rood/Tektronix Sven De Coster

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch **ENERGY STORAGE**

Types of Motors

Classified by design technology

BLDC Motor (Brushless DC)	Induction Motor	PMSM Motor (Permanent Magnet Synchronous Motor)	Universal Motor	Stepper Motor
 Computer hard drives Consumer electronics HVAC Electric Cars Industrial Engineering 	Industrial ApplicationsHVACElectric Cars	 Fans, Blowers DC Generators Centrifugal Pumps Paper Mills 	 'White goods' (washing machines, kitchen appliances,) Traction Motors (Railways) Starter Motors in Cars 	 Hard Disk Drives Robotics Antennas Telescopes Toys
 Better speed vs torque High dynamic response High efficiency Long operating life Noiseless operation Higher speed ranges 	 Simple, robust & mechanicaly strong Relative lower cost Can work in hazardous conditions High efficiency (85%-95%) 	 High performance in both low and high speed operation Low rotor inertia, easy to control Higher torque 	 Efficiency 70%-75% Torque vs speed Speed cotrol 	 Low cost High reliability High torque at low speed Simple and rugged Operates in almost any environment

Types of Drives

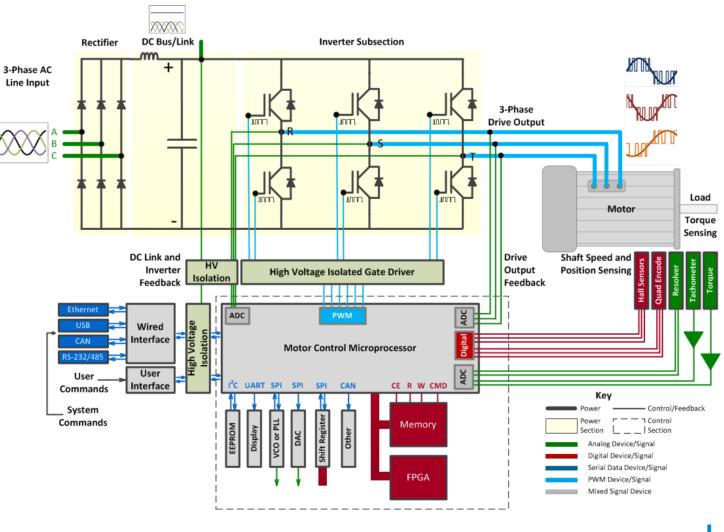
AC Drives	DC Drives	Variable Frequency Drives	Servo Drives
 Constant speed motors e.g. Process industry HVAC (fans, pumps, compressors) 	 Crane and hoists Elevators Spindle drives Winders Paper production machines 	Controls speed of AC motors Conveyor systems Blower speeds Pump speeds Machine tool speeds 	 Robotics CNC machines Solar tracking systems Antenna positioning Camera auto focus
 Low start-up current allow for smaller components and redusc mechanical shock at start-stop Lower speed results in lower noise levels 	 Adjustable speed Good speed regulation Frequent starting, breaking, reversing 	 Reducing speed will reduce Amps drawn by motor, provides energy efficiency Reduces in-rush and mechanical issues associated with starting 	 High output power relative to motor size and weight High torque to inertia ratio More continuous power and torque for short periods

Segmentation per use case

Automotive	Industrial	Consumer	MilGov/Defence/Aero
 EV/PHEV Power train 	 Power tools Robotics	Washing machinesVacuum cleaners	PlanesRoversDrones
Focus on • Efficiency • Weight	Focus on Low noise and vibration 	Focus on Energy savings / efficiency Cost 	Focus on • Precision motion control • Efficiency (drone fly time)

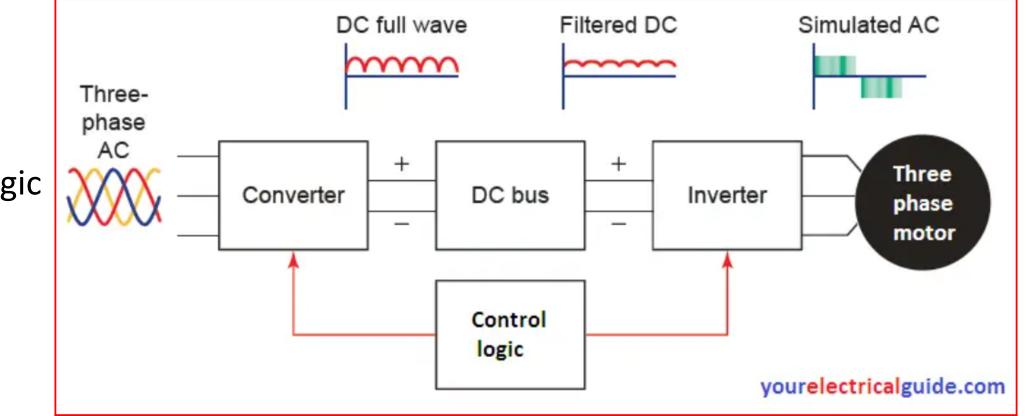
Questions regarding Inverter & Motor Drive Analysis

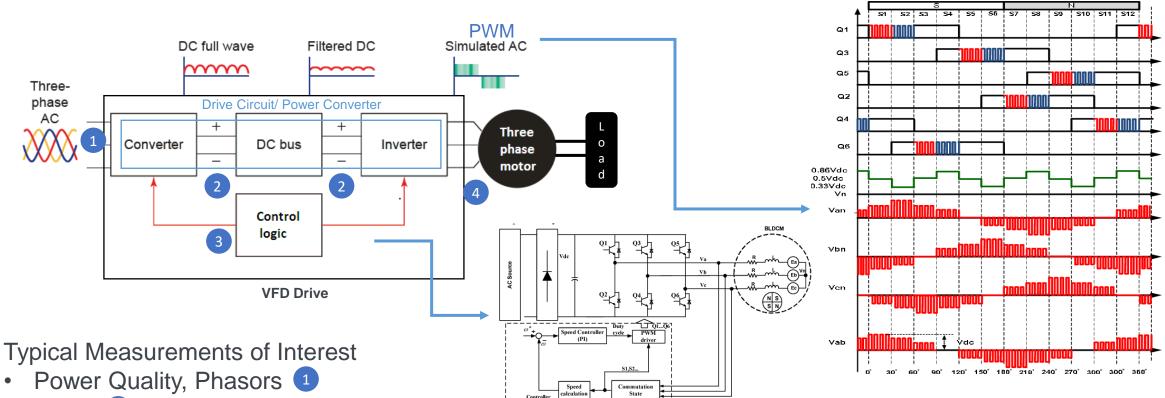
- How am I testing my Motor Drive Systems and what testing challenges do I have?
- What measurements do I need to make?


•

- How many channels do I need to monitor/analyze?
- How do I measure the dynamic response of my motor drive circuit?
- What mechanical measurements do I need to make?
- How do I measure magnetic components in my circuit?
- What characteristics of the semiconductor devices used in my circuit do I need to measure?
- How do I characterise the semiconductor devices used in my circuit?
- Do I need to perform Double Pulse measurements? How do I do that?
- How do I measure control loop response of my circuit?
- Which serial buses do I need to decode or measure in the control logic block of my design?
- How do I measure DC power rails in the control logic block of my design?
- Am I using WBG devices in my design? What measurement challenges do I face?
- Do I need to perform Direct Quadrature Zero (DQO) analysis on my design?

Motor Drive

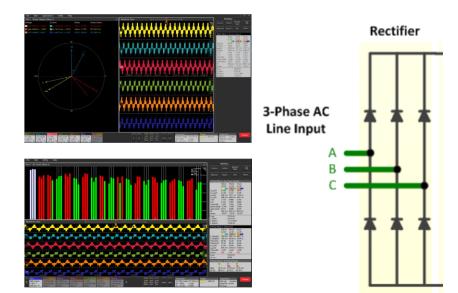

- Converter
- DC Bus
- Inverter
- Control Logic
- Motor

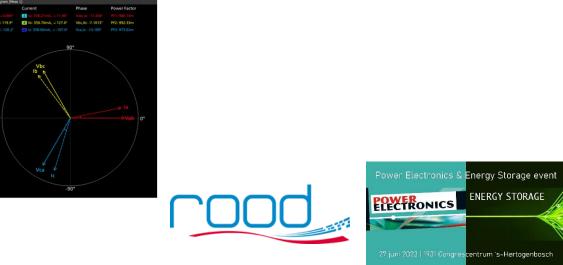

Motor Drive

- Converter
- DC Bus
- Inverter
- Control Logic
- Motor

A typical 3-Phase Motor diagram

- Ripple 2
- Standard 5 Series measurements for control and user interface 3
- Power Quality, Phasors
- Efficiency

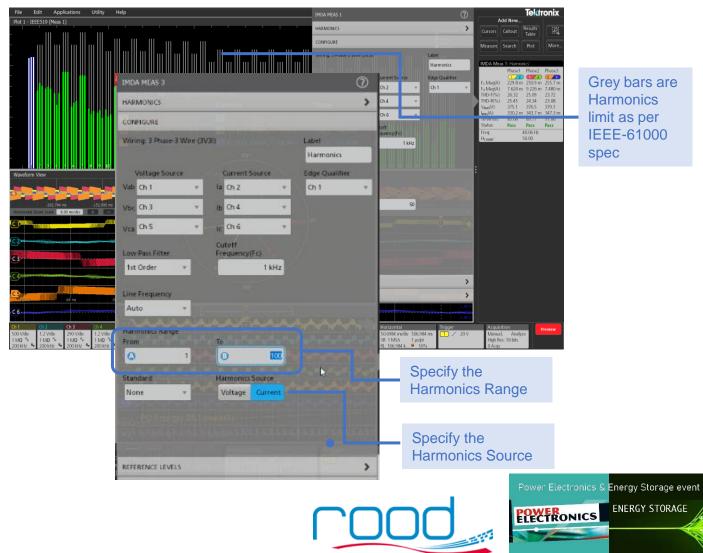

Fermanent magne


Testing that needs to be done – by building block Converter

- 3-Phase Power Quality
 - Frequency, RMS values, Crest Factors, PWM frequency
- 3-Phase Harmonics analysis
- Phasor Diagram
 - Magnitude and phase angle between voltage and current
 - Power Factor for all voltages and currents

Testing that needs to be done – by building block Converter - Significance of Power Quality

- Reduce losses
 - hence lower energy bills
- Improve Power Factor
 - avoid penalty for low power factor
- Prevent malfunctioning equipment
- Reduce losses in equipment
- Increase power equipment life span



ELECTRONICS

ENERGY STORAG

Testing that needs to be done – by building block Converter - Significance of harmonics analysis

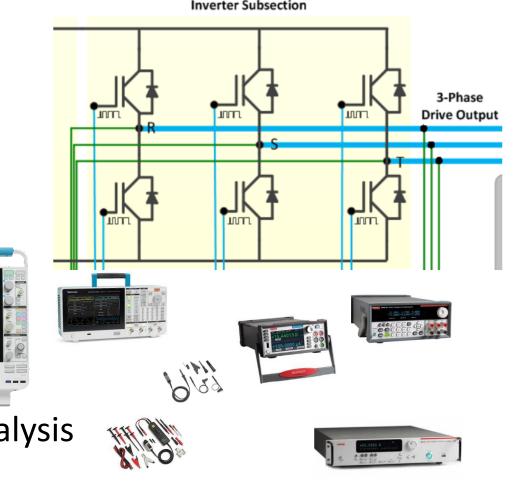
- Harmonics can impact efficiency
 - Can result in heating of coils, misfiring of VFDs, etc
 - Frequent cause of Power Quality Problems
- important sub-measurements such as THD-F, THD-R
- up to 200th order
 - supports range filter for visibility
- Support pass/fail status

27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosc

VFD : Variable Frequency Drive THD-R : Relative to Total Signal (0 < THD-R < 1) THD-F : Relative to Fundamental component (IEC61000-2-2)

Testing that needs to be done – by building block DC Bus

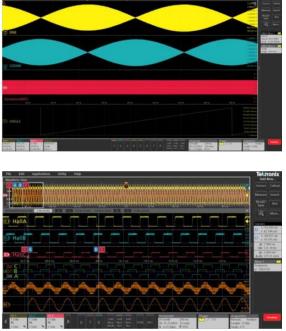
- AC ripple analysis
 - Residual AC voltage on a DC component
 - Can be measured at input or output configuration
- Magnetic analysis

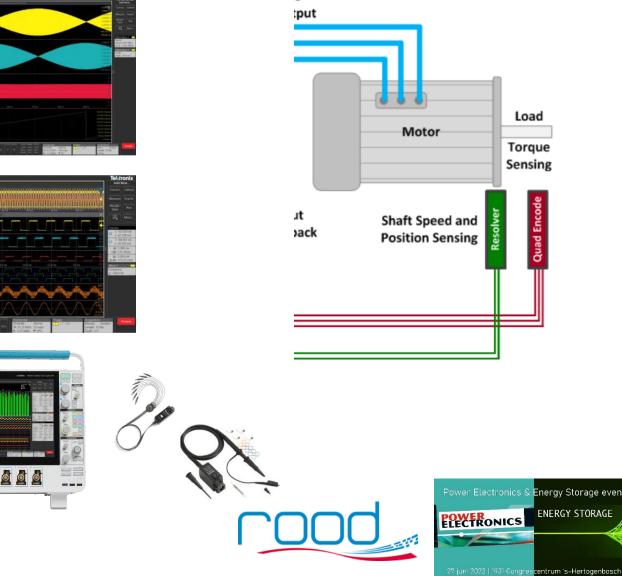


DC Bus/Link

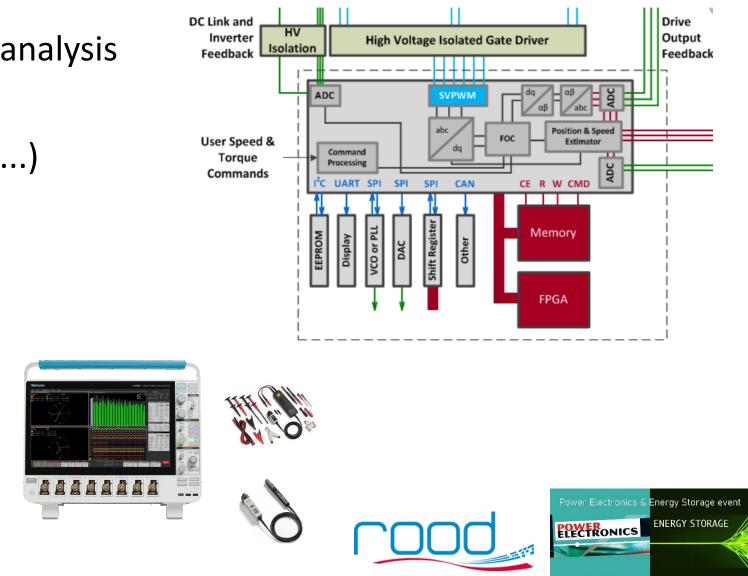
VFD : Variable Frequency Drive THD-R : Relative to Total Signal (0 < THD-R < 1) THD-F : Relative to Fundamental component (IEC61000-2-2)

Testing that needs to be done – by building block Inverter

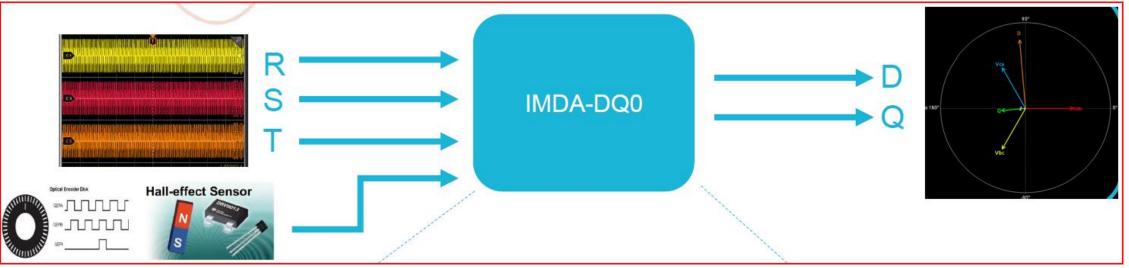

- 3-phase Power Quality
- 3-phase Harmonics analysis
- Semiconductor device switching analysis
- Semiconductor device characterisation
- Safe Operating Area (SOA)
- Amplitude and timing analysis
- Turn on/turn off time analysis
- WBG Double Pulse Testing and switching analysis



Testing that needs to be done – by building block Motor

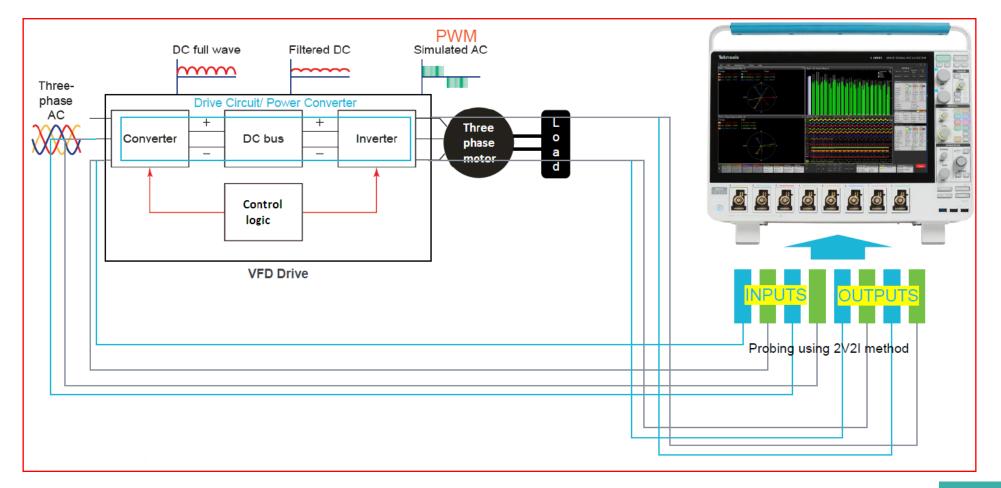

- Mechanical analysis
 - Speed
 - Acceleration
 - Angle
 - Direction
 - Torque
 - Mechanical power
 - System efficiency

Testing that needs to be done – by building block Control Logic


- Direct Quadrature Zero (DQ0) analysis
- Control Loop Analysis
- Serial decoding (CAN, I²C, SPI, ...)
- Mixed Signal analysis
- DC Power Rail analysis

2023 1931 Congrescentrum 's-Hertogenboy

Testing that needs to be done – by building block Control Logic


• Direct Quadrature Zero (DQ0) analysis

- Hard to analyze need three phases to analyze
- Park's Transformation converts raw 3 Phase voltage or current signals into DQ0 components for simplified analysis

Testing that needs to be done – by building block Efficiency

Thank you! Visit our stand xxx Follow us at <u>Linkedin - CN Rood</u>

Sven De Coster – <u>sdecoster@cnrood.com</u>

ENERGY STORAGE

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch