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ON BEHALF OF TT&MS

▪ Founded in 2003

▪ Largest product portfolio of

power related instrumentation

▪ Supplier of high quality test

and measurement equipment
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Interface Algorithms – a Comparison
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Conclusions – PHIL Now and in Future
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Figure: adapted from [1, 2]. Table: adapted from [1].
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▪ Optimal PHIL system requirements

Cover all relevant system dynamics

Detailed models of all components

Stable (quasi-continuous) test environment
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• Realistic PHIL system conflict

Figure left: adapted from [1, 2]. Figure right: adapted from [1].
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▪ 1st: Define use cases and requirements
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Islanded
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Phasor co-
simulation

Secondary reserve Grid optimization

Tertiary reserve Voltage support
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Under-/overvoltages Phase balancing

Droop control 𝑃(𝑓) 𝑄 𝑈 , cos 𝜑 𝑃
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Fault ride through Harmonics
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Transients, e. g. LI/SI Active fault clearance
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• What to consider?

• Scope of PHIL experiments (type of DuT)

• Challenges/incidents/events of interest

• Given characteristics of the Device under Test

• Required characteristics of the simulation 

environment, required level of detail
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Figure: adapted from [1, 2]. Table: adapted from [2].
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▪ 2nd: Decide for a hardware interface
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• What to consider?

• Type of communication between RTS and PA 

(lab environment: physical distance, disturbances)

• Amplifier bandwidth, dynamics and signal quality

• Maximum time delay suitable for dynamic events
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• Crucial impact on bandwidth and dynamics
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• Fundamental decision required

• Linear amplifier (class-A/B/AB)

• Switching amplifier (class-D)
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Figure: adapted from [1, 2]. Content basing on [1, 3, 4, 5].
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▪ 3rd: Implement suitable Interface Algorithm (IA)
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• What to consider?

• Required bandwidth and dynamics

• Minimum calculation time for environment simulation

• Utilized amplifier and transducers (transfer functions)

• RoS/DuT impedances at all points of operation (ratio)

• Compromise between conflictive requirements

F
P

G
A

• Where to implement the IA?

• In dependance of the use case

• CPU realtime simulator

• FPGA realtime simulator

• (FPGA power amplifier)

• Multiple IAs might be used (CPU⇌FPGA⇌DuT)

Figure: adapted from [1, 2]. 
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Figure adapted from [1], basing on [6, 7, 8, 9, 10].
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▪ Lab scale MMC test bench

Operation and control of meshed

offshore HVDC systems using (P)HIL 

Controllability and interoperability,

fault handling and AC grid support

Resonance phenomena and harmonic

interaction of active components

▪ Exemplary use case

Offshore wind park integration in AC grids

Start-up sequences, change of wind speed

Picture: RWTH Aachen [12]. Figure: [13]. Further information given in [12, 13].
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Amplifier

Power 
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Control
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Control
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Control

OP4510
MMC 

Control

DC Grid
Control
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Real-Time Simulation

2x OP1210 
MMC

2x OP1210 
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DC Grid:
Cascaded
Pi-Sections

© Martin Braun

A – PHIL AT RWTH AACHEN
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RoS DuT

▪ Energy Lab 2.0

Large-scale research infrastructure

with 20+ OPAL-RT cores and a

1 MVA, 1.5 kV power amplifier

Multimodal development, testing and grid 

integration of new technologies: DC grids,

storage systems and superconductivity

▪ Exemplary use case

Flywheel Energy Storage System (FESS)

Development and validation of adaptive

grid-synchronous controllers
Pictures: KIT. Further information given in [14, 15].

B – PHIL AT KARLSRUHE INSTITUTE OF TECHNOLOGY

Source: KIT

OP4510

OP5700



▪ Smart Energy Application Lab

Development and validation of intelligent

algorithms and methods for control 

and monitoring of electrical grids

(P)HIL test bed for future energy systems:

PV and Wind, CHP, EV charging and BES

▪ Exemplary use case

AI grid controller for low voltage grids

Reinforced learning based control of a 

digital twin integrating real power hardware

Pictures: TU Bielefeld. Further information given in [16, 17].

C – PHIL AT BIELEFELD UNIV. OF APPLIED SCIENCES

Source: Giovanni De Carne / 
KIT

RoS

DuT

Cinergia
Power amplifier

OP5707
Real time simulator



▪ Mighty tool for development, testing, validation and 

evaluation of power grids and its components

▪ A careful system layout is mandatory, compromises must be made

▪ An optimum for test beds and respective use cases must be engineered

▪ Further developments towards turnkey solutions for PHIL setups

▪ Research on Interface Algorithms and minimization of the necessary compromise

Picture: OPAL-RT TECHNOLOGIES.

CONCLUSIONS – PHIL NOW AND IN FUTURE



▪ Further developments towards turnkey solutions for PHIL setups

▪ Research on Interface Algorithms and minimization of the necessary compromise

▪ Customized engineering and test bed integration by specialists

▪ Mighty tool for development, testing, validation and 

evaluation of power grids and its components

▪ A careful system layout is mandatory, compromises must be made

▪ An optimum for test beds and respective use cases must be engineered

Picture: OPAL-RT TECHNOLOGIES.

CONCLUSIONS – PHIL NOW AND IN FUTURE
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▪ Cinergia GE/EL 30+ vAC/DC

Complete regenerative DC Load/Source

Full 4 quadrant AC Grid Emulator and Electronic Load

Power Amplifier for Power HIL

▪ Special features

Battery Emulation and Testing

PV Panel Emulation

▪ Specification

7.5 kW to 160 kW models, up to 2 MW parallel

AC voltage from 20 V to 277 Vrms (optional 295 Vl-n)

DC voltage from 20 V to 750 Vdc (optional 800 Vdc) 

Peak power: 200 % of rated power

PHIL AMPLIFIERS AT THE STAND



▪ Itech IT7800 

Regenerative grid simulator

Full 4 quadrant AC&DC power Source/Load

Professional islanding test mode, 

support R, L, C and active, reactive power settings

4 output modes of AC/DC/AC+DC/DC+AC can be realized

▪ Special features

Harmonic simulation and analysis function up to 50 times, built-in IEC61000-3-2/3-12

Simulation of arbitrary waveform output, supports CSV file import waveform

▪ Specification

High power density, up to 15 kVA for 3U

Master and slave equal flow, parallel machines up to 960 kVA

PHIL AMPLIFIERS AT THE STAND



Frankweg 25
2153 PD Nieuw-Vennep
Nederland

+31 252 - 621 080
 info@ttms.nl

Sebastian Hubschneider
OPAL-RT Germany GmbH
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▪ ACIE Lab: Microgrids and battery systems

(Un-)intentional islanding and grid synchronity

Provision of frequency containment reserve (FCR) 

▪ DiCIE Lab: Stability of (isolated) DC grids

Influence of DC loads on DC system performance

Short circuit behavior, oscillations and grounding

▪ Exemplary use case

PHIL testing of ship DC grids with oscillating loads

Fault behavior and clearance, oscillations up to 30 𝑘𝐻𝑧
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Figure: Hamburg University of Technology. Further information given in [11].
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▪ Voltage type Ideal Transformer Method (ITM): circuit, closed loop and stability analysis

sc
h

e
m

a
ti

ca
ll
y Device under Test

Real hardware

Test environment (Rest of System, RoS)

F
P

G
A

Power 
amplifier

D/A or SFP

A/D or SFP Transducers

Simulation

In
te

rf
a

ce

Figure: adapted from [1, 2]. 
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Figure top left: adapted from [1, 2]. Figures bottom left, top right: adapted from [1]. Equation basing on [6].
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𝐺OL,ITM 𝑠 =
𝑍S 𝑠

𝑍H 𝑠
∙ 𝑒−𝑠𝑇T ∙ 𝐻LP(𝑠).
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Transfer functions from [1], basing on [6, 7, 8, 9, 10].

FOCUS: INTERFACE ALGORITHMS – A COMPARISON

▪ Open loop transfer functions: 𝐺OL 𝑠 = 𝐺PA 𝑠 ∙ 𝐺T 𝑠 … 

Ideal Transformer Method (ITM) …   ∙
𝑍S 𝑠

𝑍H 𝑠
∙ 𝑒−𝑠𝑇T

Filtered Ideal Transformer Method (FITM) …   ∙ 𝐻LP(𝑠) ∙
𝑍S 𝑠

𝑍H 𝑠
∙ 𝑒−𝑠𝑇T

Partial Circuit Duplication (PCD) …   ∙
𝑍S 𝑠 𝑍H 𝑠

𝑍S 𝑠 +𝑍SH 𝑠 𝑍H 𝑠 +𝑍SH 𝑠
∙ 𝑒−𝑠𝑇T

Damping Impedance Method (DIM) …   ∙
𝑍S 𝑠 𝑍H 𝑠 −𝑍∗ 𝑠

𝑍H 𝑠 +𝑍SH 𝑠 𝑍S 𝑠 +𝑍SH 𝑠 +𝑍∗ 𝑠
∙ 𝑒−𝑠𝑇T

Modified Damping Impedance Method (MDIM) …   ∙
𝑍S 𝑠 𝑍H 𝑠 −𝑍∗ 𝑠

𝑍H 𝑠 +𝑍SH 𝑠 𝑍S 𝑠 +𝑍SH 𝑠 +𝑍∗ 𝑠
∙ 𝑒−𝑠𝑇T ,  𝑍∗ 𝑠 variable

Transmission Line Model (TLM) …   ∙
𝑍S 𝑠 −𝑅SH

𝑍S 𝑠 +𝑅SH
∙
𝑍H 𝑠 −𝑅SH

𝑍H 𝑠 +𝑅SH
∙ 𝑒−2𝑠𝑇T ,  𝑅SH =

𝐿

𝑇T
or  𝑅SH =

𝑇T

𝐶

Time-variant First-order approximation (TFA) …   ∙
𝑍S 𝑠

𝑅H+𝑠𝐿H
∙ 1−

𝑠𝑇T

2
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