Systematic Approach temperature measurement in Power and battery/ accu applications

「ECHNOLOGIES

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch **ENERGY STORAGE**

Overview

- 1. Introduction
- 2. Thermal design for optimal battery & power control cooling
 - a. Thermal challenges of batttery cooling
 - b. Thermal challenges cooling of Control electronics
- 3. Process to come to an optimal thermal design
- 4. Temperature measurements
- 5. Conclusion

1. Introduction

Power Electronics & Energy Storage event EXERCISE ENERGY STORAGE 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch

Overview

- 1. Introduction
- 2. Thermal design for optimal battery & power control cooling
 - a. Thermal challenges of battery cooling
 - b. Thermal challenges of Control electronics cooling
- 3. Process to come to an optimal thermal design
- 4. Temperature measurements
- 5. Conclusion

2a. Thermal challenges battery cooling

- 1. Battery performance heavily effected by internal temperature and temperature differences between cells and modules.
- 2. Heat generated by:
- 3. Reaction heat Qr
- 4. Polarisation heat Qp
- 5. Joule heat Qj
- 6. Qt=Qr+Qp+Qj
- 7. Joule heating in the busbar, interconnects and in the cells
- 8. Keep temperature uniform at 35-40°C max

For more interesting data see paper:

Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells

Power Electronics & Energy Storage eve

23 | 1931 Congrescentrum 's-Hertogenbo

FLECTRONICS

ENERGY STORAG

21-24 August 2017 ICAE2017, 21-24 August 2017 By Yuqi Huang and others

2a. Example

- 1. Assume battery electrical resistance is 1.5mOhm (3P4S spec sheet) fastcharge with 200A (50A/cell) versus 400A(100A/cell)
- 2. $Pd=200^2*0.0015=60W$ / module, assume the full battery pack exist out of 48 modules, Pd=48*60=2880W
- 3. *Pd*=400^2*0.0015=240*W* assume the full battery pack has 48 modules, *Pd*=48*240=11520*W*
- 4. Fast charging and dis-charging has a large impact on dissipated power

2a.Process to come to optimal cooling design

- Experimental testing of battery
- Build detailed computational model of battery/ cooling of power electronics
- Cold-plate design Analytical modelling in combination with computational and experimental modelling
- Design of cooling assembly
- Experimental test full system

Overview

- 1. Introduction
- 2. Thermal design for optimal battery & power control cooling
 - a. Thermal challenges of batttery cooling
 - b. Thermal challenges of Control electronics cooling
- 3. Process to come to an optimal thermal design
- 4. Temperature measurements
- 5. Conclusion

2b. Thermal challenges cooling of Control electronics

- 1. High concentration of power e.g. FETs, IGBTS, coils, transformers, capacitors
- 2. Other: cables, tracks, interconnects.
- 3. (Thermal) Interface resistances
- 4. (Thermal) Spreading resistance

2b.Process to come to optimal cooling design

- Analytical calculation in combination with detailed computational modelling cooling of power electronics
- Optimization of flow and heat paths, design of cooling mechanics, heat sink, cold plate
- Design of final cooling assembly
- Experimental test full system

Power Electronics & Energy Storage eve

FLECTRONICS

ENERGY STORAG

Overview

- 1. Introduction
- 2. Thermal design for optimal battery & power control cooling
 - a. Thermal challenges of batttery cooling
 - b. Thermal challenges of Control electronics cooling
- 3. Process to come to an optimal thermal design
- 4. Temperature measurements
- 5. Conclusion

3. Process schematic review

27 juni 2023 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

Overview

- 1. Introduction
- 2. Thermal design for optimal battery & power control cooling
 - a. Thermal challenges of batttery cooling
 - b. Thermal challenges of Control electronics cooling
- 3. Process to come to an optimal thermal design
- 4. Temperature measurements
- 5. Conclusion

Temperature measurement

- Measuring is knowing, but what are you measuring?
 - By using the three methods, analytical, computational, experimental you get insight in what need to be measured, where and how.
 - Methods:
 - Temperature sensor, thermocouple, NTC, PT100
 - Infrared imaging
 - Diode (junction) measurement

Thermocouple

- Every temperature sensor measures its own temperature
- Thermocouple is a line sensor not a spot sensor

IV = chromel + alumel

- $EMF = \int_{0}^{L} \varepsilon_{1} \frac{dT}{dx} dx + \int_{L}^{0} \varepsilon_{2} \frac{dT}{dx} dx$
- $\epsilon = total thermoelectric power$

of material mv/C

T = Temperature

- x = distance along the wire, m
- L = lengthof the wire, m

Thermocouple

- Contact surface > 10x diameter, using glue best
- Flat joint, don't connect by twisting => many junctions
- Diameter wires small in line with object to be measured

Measurement errors

- Size of sensor
- Location of sensor

Base of power module

Base of HS – below module (temp scale different)

T_{sensor}

 $\land \land$

Ambient

What do I want to measure? What do I measure?

- Component case
- Heatsink
- TIM

Measurement errors cont'd

- Time constant of sensor
 - Is the time constant in line with the phenomena

Glass bead sensor, Ø0.37mm tau 17.2+/-0.8ms (measured)

Measurement errors cont'd

Measurement speed datalogger

- Example Keysight DAQ970A with DAQM901A module
- Scanning speed
 - 1 channel used max 80 samples per second (80Hz)
 - 20 channels used 4 samples per second/ channel (4Hz)
 - Check if the signal (temperature) profile can be represented

use as rule of thumb measurement speed 10x signal speed

> 80Hz measurement speed for signals of 8Hz

		Multi	plexer		Actuator Matrix		RF multiplexer	Multifunction
	DAQM900A	DAQM901A	DAQM902A1	DAQM908A	DAQM903A	DAQM904A	DAQM905A	DAQM907A
General								
Number of channels	20 + 2	20 + 2	16	40	20	4 x 8	Dual 1 x 4	See page 25
	2/4 wire	2/4 wire	2/4 wire	1 wire	SPDT	2 wire	50 Ω	for module
Connects to internal DMM		•	•	•				specifications
Scanning speed	450 ch/s	80 ch/s	250 ch/s ^[1]	100 ch/s				specifications
Open/close speed	120/s	120/s	120/s	70/s	120/s	120/s	60/s	

Measurement errors cont'd Signal 8Hz (green), measurement speed 80Hz (blue)

-

Measurement errors cont'd Signal 8Hz (green), measurement speed 80Hz (blue) Red sensor (including time constant sensor)

Power Electronics & Energy Storage event
ENERGY STORAGE
ENERGY STORAGE
27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch

Infrared imaging

27 juni 2023 | 1931 Congres<mark>centrum 's-Hertogenbosch</mark>

Infrared imaging Field of View – comparison of IVOF

 $IFOVm = IFOV = FOV = 4.7^{\circ}$ Averaged temperature based on averaged radiation of everything in FOV $IFOVm = 0.07^{\circ}$

FOV = 28°/18°

27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch

Infrared imaging Field of View - exceptions

Infrared imaging

27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch

ENERGY STORAGE

Infrared imaging

• What are the differences – where do you pay for?

Parameter	FLIR A40	FLIR i3	FLIR i5	FLIR i7	FLIR E30bx	FLIR E50bx	FLIR T420	FLIR SC325	FLIR T640	X8000 **
θ _H [°]	28	12.5	21	29	25	25	25	28	15	22
θ _v [°]	18	12.5	21	29	19	19	19	19	11	17
Hres. [pixel]	320	60	100	140	160	240	320	320	640	1280
Vres. [pixel]	240	60	100	140	120	180	240	240	480	1024
Focal Distance [mm]	300	600	600	600	400	400	400	400	500	400
IFOVm,MAX [mm]	1.4	6.6	6.7	6.7	3.3	2.2	1.7	1.9	0.6	0.4
Price indication (excl VAT) ***	€ 15 000	€ 1 000	€ 1 500	€ 2 100	€ 2 864	€ 5 254	€ 8 532	€ 14 000	€ 24 000	~

** X8000: Avaliable optics - 38° x 31°, 22° x 17°, 11° x 9°, 5.5° x 4.4° and close up x3 (6.4 x 5.1 mm,

IFOV ~= 5 µm)

*** Price indication purely as reference. Macro lens for SC325: ~€2000.-

Junction measurement

Response of forward voltage, shown in µseconds

> Forward voltage measurement step 350mA-10mA

Conclusion

- Measuring is knowing, but what are you measuring?
 - By using the three methods, analytical, computational, experimental you get insight in what need to be measured, where and how.
- Important is:
 - Selection of sensor type
 - Size of sensor
 - Location and mounting method
- For transient behaviour check you sensor time constant and datalogger sample rate
- For infrared imaging check if the camera/lens you use is capable to capture the size of the object. Calibrate for emissivity and check reflections

Q&A

Contact details **Norbert P. Engelberts** Director **Optimal Thermal Solutions BV** nengelberts@ots-eu.com +31 (0)35 632 1751 +31 (0)65 230 2258

www.ots-eu.com

With courtesy of Emoss Mobile Systems BV

27 juni 2023 1931 Congrescentrum 's-Hertogenbosci

Power Electronics & Energy Storage even

ELECTRONICS

ENERGY STORAGE