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2a. Thermal challenges batttery cooling
1. Battery performance heavily effected by internal temperature and 

temperature differences between cells and modules.

2. Heat generated by:

3. Reaction heat Qr

4. Polarisation heat Qp

5. Joule heat Qj

6. 𝑄𝑡=𝑄𝑟+𝑄𝑝+𝑄𝑗

7. Joule heating in the busbar, interconnects and in the cells

8. Keep temperature uniform at 35-40°C max 

For more interesting data see paper: 
Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion 
Battery cells
21-24 August 2017 ICAE2017, 21-24 August 2017 By Yuqi Huang and others 5



2a. Example

1. Assume battery electrical resistance is 1.5mOhm (3P4S spec sheet) fast-
charge with 200A (50A/cell) versus 400A(100A/cell)

2. 𝑃𝑑=200^2∗0.0015=60𝑊 / module, assume the full battery pack exist 
out of  48 modules, 𝑃𝑑=48∗60=2880𝑊

3. 𝑃𝑑=400^2∗0.0015=240𝑊 assume the full battery pack has 48 modules, 
𝑃𝑑=48∗240=11520𝑊

4. Fast charging and dis-charging has a large impact on dissipated power
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2a.Process to come to optimal cooling design
• Experimental testing of battery

• Build detailed computational model of 
battery/ cooling of power electronics

• Cold-plate design - Analytical modelling in 
combination with computational and 
experimental modelling

• Design of cooling assembly

• Experimental test full system

With courtesy of Emoss Mobile Systems BV
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2b. Thermal challenges cooling of Control 
electronics
1. High concentration of power e.g. FETs, IGBTS, coils, transformers, 

capacitors 

2. Other: cables, tracks, interconnects.

3. (Thermal) Interface resistances

4. (Thermal) Spreading resistance
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2b.Process to come to optimal cooling design
• Analytical calculation in combination with 

detailed computational modelling cooling of 
power electronics

• Optimization of flow and heat paths, design 
of cooling mechanics, heat sink, cold plate 

• Design of final cooling assembly

• Experimental test full system

With courtesy of Emoss Mobile Systems BV
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3. Process schematic review
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Temperature measurement
• Measuring is knowing, but what are you measuring?

• By using the three methods, analytical, computational, experimental you get 
insight in what need to be measured, where and how.

• Methods:
• Temperature sensor, thermocouple, NTC, PT100

• Infrared imaging

• Diode (junction) measurement

14



Thermocouple
• Every temperature sensor measures its own temperature

• Thermocouple is a line sensor not a spot sensor
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Thermocouple
• Contact surface > 10x diameter, using glue best

• Flat joint, don’t connect by twisting => many junctions

• Diameter wires small in line with object to be measured

• No copper constantan
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Measurement errors
• Size of sensor

• Location of sensor
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Measurement errors cont’d
• Time constant of sensor

• Is the time constant in line 
with the phenomena
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Glass bead sensor, Ø0.37mm tau 17.2+/-0.8ms (measured)
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Measurement errors cont’d
Measurement speed datalogger

• Example Keysight DAQ970A with DAQM901A module

• Scanning speed
• 1 channel used max 80 samples per second (80Hz)

• 20 channels used 4 samples per second/ channel (4Hz)

• Check if the signal (temperature) profile can be 
represented 
use as rule of thumb measurement speed 10x signal speed 

➢ 80Hz measurement speed for signals of 8Hz
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Measurement errors cont’d
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Signal 8Hz (green), measurement speed 80Hz (blue)



Measurement errors cont’d
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Infrared imaging
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Infrared imaging
Field of View – comparison of IVOF
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IFOVm = IFOV = FOV = 4.7°

Averaged temperature based on averaged 
radiation of everything in FOV

IFOVm = 0.07°

FOV = 28°/18°



Infrared imaging
Field of View - exceptions
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Infrared imaging
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FLIR     i
series FLIR E 

Series

FLIR SC325
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FLIR X8000
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Infrared imaging
• What are the differences – where do you pay for?
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Junction measurement
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Response of forward voltage, shown in 
mseconds

calibration curve 

Forward voltage measurement 
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Conclusion
• Measuring is knowing, but what are you measuring?

• By using the three methods, analytical, computational, experimental you get insight 
in what need to be measured, where and how.

• Important is:
• Selection of sensor type
• Size of sensor
• Location and mounting method

• For transient behaviour check you sensor time constant and datalogger 
sample rate

• For infrared imaging check if the camera/lens you use is capable to capture 
the size of the object. Calibrate for emissivity and check reflections 
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Q&A
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Contact details
Norbert P. Engelberts

Director

Optimal Thermal Solutions BV

nengelberts@ots-eu.com

+31 (0)35 632 1751

+31 (0)65 230 2258

www.ots-eu.com

With courtesy of Emoss Mobile Systems BV
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