

### PRESS-FIT TECHNOLOGY IN (HV) APPLICATIONS

For Robust and Durable PCB Connections



Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch **ENERGY STORAGE** 

# CONTENT

- 1. Introduction to Würth Elektronik ICS
- 2. Basics of Press-Fit
- 3. Connecting Solutions
- 4. Press-Fit Components
- 5. Press-Fit Technology in (HV) Applications
- 6. Handouts Reference Material for reading afterwards



### Würth Elektronik ICS Intelligent Power & Control Systems







ntrum 's-Hertogenbo

3

# BASICS OF PRESS-FIT TECHNOLOGY



## Basics of Press-fit Technology PRESS-FIT TECHNOLOGY VS. SOLDERING TECHNOLOGY

#### Stable solution without thermal load

- Elimination of soldering defects (e.g. solder bridges, cold solder joints, etc.)
- Avoidance of flux residues, which can lead to contact faults
- Higher holding force
- No size restrictions for assemblies to be processed due to soldering system specifications
- Long connectors remain clean and can be used for transfer on the rear side
- Lower contact resistance due to homogeneous material transition
- Very high current carrying capacity
- Higher environmental friendliness





Comparison of the thermographic image of an assembly with soldered connection and press-fit technology left: Press-fit technology; right: soldering technology





### Basics of Press-fit Technology **CURRENT CARRYING CAPACITY**



#### Solder connection

- Heterogeneous material transition due to applied solder leads to higher power dissipation
- Contact resistance is about twice as high as with press-fit technology and is approx. **400**  $\mu\Omega$



#### **Press-fit connection**

- Seamless and very homogeneous material transition between press-fit pin and PCB copper
- Contact resistance is approx. **150**  $\mu\Omega$

|     | Interface 1 | Interface 2 | 2                |                        |
|-----|-------------|-------------|------------------|------------------------|
| Pin | 5           | Solder      | Circuit<br>Board |                        |
|     |             |             |                  | <b>300 - 400</b><br>μΩ |







## Basics of Press-fit Technology **PRESS-IN ZONE**

#### Physical consideration of the press-in zone

- In order to ensure a high current transmission, the contact resistance of the press-fit connection must be smaller than the intrinsic resistance of the pressed pin.
- This is ensured if the connection area between pin and sleeve is at least equal to the cross-sectional area of the pin.

Connection surface between pin and sleeve ≥ Cross-sectional area of the pin





# Basics of Press-fit Technology PRESS-IN ZONE

#### **Assumption:**

- The cross-section of a solid press-fit pin is 1.28 mm<sup>2</sup> (1.13x1.13mm)
- Diagonal is 1.60mm
- The PCB has a thickness of 2.40 mm with a copper sleeve diameter of 1.45 mm.

Connection area between pin and sleeve  $\geq$ cross-sectional area of the pin: 4 x 2.40 mm x  $\varphi$  x 0.725 mm  $\geq$  1.28 mm<sup>2</sup>=  $\varphi$  x 0.725 mm  $\geq$  1.28 mm<sup>2</sup> / 4 x 2.40 mm

 $\varphi \ge 0.184$  or  $\varphi \ge 10.6^{\circ}$  in angular measure



If pin and sleeve are made of the same material (Cu) and the connection angle per connection is at least 10°, the press-fit zone does not represent an electrical or thermal bottleneck.





# Basics of Press-fit Technology PRESS-IN ZONE

- In practice: Pin material of the powerelements is made of brass. This is due to material characteristics as conductivity, stiffness and milling capabilities.
- Copper has a 4x better conductivity to brass.
- That means the copper in the PCB has 4-times better electrical conductivity (57.5 MS/s), than the brass pin (14.6 MS/m).
- In theory, we could reduce the contact angle to 3°.





Minimum pin connection compared to the real press-in zone

Minimum tie-in angle of 3°
 Real press-in zone, 10°-12°





• PRESS-FIT TECHNOLOGY

**According to Ohm's law it follows:** The required connection angle is only 3°

9 POWER ELECTRONICS & ENERGY STORAGE EVENT 2023

## Basics of Press-fit Technology MECHANICAL PROPERTIES

- To ensure a secure connection, the contact pin to be pressed has a **larger diagonal** than the hole in the PCB.
- Due to the oversize of the contact pin, an overpressure is generated during pressfitting, which leads to a deformation of the contact pin or the PCB hole.
- Very high contact forces act at the deformed points, guaranteeing a secure and stable connection even under thermal and mechanical loads.
- A single pin typically has a holding force of **over 20 N**, depending on the copper thickness of the sleeve used and applied press-in force.
- A surface metallization leads to an **increase of the forces by 25 30 %**





**10** PRESS-FIT TECHNOLOGY POWER ELECTRONICS & ENERGY STORAGE EVENT 2023

FCTRONIC

### Basics of Press-fit Technology **CURRENT CARRYING CAPACITY**

The contact resistance of the press-fit connection is smaller than the intrinsic resistance of the pressed pin.

- → This results in a very high current carrying capacity of the press-fit connection.
- → The press-fit connection therefore has a **low heat generation**.
- → The low power dissipation is particularly important, as any contact resistance can lead to a drop in voltage in the electrical system.
- → A too low voltage level can lead to a reset and endanger the full functionality of the system, for example CAN frame errors, analog input variations, GND issues.

Conclusion: low contact resistances are essential for maintaining a correct system operation.









# Basics of Press-fit Technology <u>CURRENT CARRYING CAPACITY – ON THE EXAMPLE OF POWERELEMENTS</u>

THE CURRENT CARRYING CAPACITY OF THE POWERELEMENT IS INFLUENCED BY SEVERAL FACTORS:

#### LAYOUT OF THE PCB

- Conductor cross-sections (conductor width and copper thickness)
- Copper composition in the circuit board
- Positioning of the Powerelement
- Through-hole plating / vias

#### **ENVIRONMENTAL CONDITIONS**

- Operating temperature range
- Load currents
- Load intervals
- Thermal management / cooling (active / passive)
- Permissible temperature limit
- Dimensioning of supply lines (cables, busbars, etc.)

#### SELECTION OF THE POWERELEMENTS

- PCB connection technology
- Material selection
- Dimension
- Number of contact points (pins)
- Dimension of soldering and screwing surfaces



The challenge in designing high-current systems lies in the optimal **interaction of all system components.** 





## Basics of Press-fit Technology ADVANTAGES OF PRESS-FIT TECHNOLOGY

#### Numerous outstanding features

- Seamless and homogeneous material transition between press-fit pin and PCB copper
- Gas-tight connection through cold welding
- Excellent mechanical stability under the toughest environmental conditions
- No thermal stress on the printed circuit board
- Significantly lower contact resistance between the press-fit pin and the PCB sleeve due to cold-welded connection
- No danger of cold solder joints
- High mechanical load capacity and vibration resistance
- Compact design of the assemblies and reduction of the required installation space through double-sided assembly of the printed circuit board





## Basics of Press-fit Technology PCB WITH PRESS-FIT TECHNOLOGY VS. WIRING HARNESSES

- Clear and reliable solution
- Up to 30 % wiring harness reduction
- Reduction of cable cross-section by up to 50%
- Connection of power and signal lines without complex potential separation
- No wiring errors
- Up to 80 % less assembly effort
- Reduction of interfaces
- Weight and space savings
- Real life example: Central electric PCB of a passenger bus:
- Original wire harness 986 wires.
- Reduction using a PCB system: 263 wires
- Reduction 36%



### <u>CLEVERLY</u> PRESSED-IN...





# **CONNECTING SOLUTIONS**





15 PRESS-FIT TECHNOLOGY POWER ELECTRONICS & ENERGY STORAGE EVENT 2023

### Connecting Solutions CABLE CONNECTION

**CABLE LUG** 









27 juni 2023 | 1931 Congres<mark>centrum 's-Hertogenbos</mark>

### Connecting Solutions CONNECTION OF RELAYS AND FUSES

















### Connecting Solutions IGBT CONNECTIONS









# <u>COMPONENTS IN PRESS-</u> FIT TECHNOLOGY

LECTRONICS

Energy Storage even

ENERGY STORAG



### Components in Press-Fit Technology **RELAY AND FUSE BASES**







### Components in Press-Fit Technology **CONNECTORS**





#### Power Electronics & Energy Storage event ERECTRONICS ENERGY STORAGE

um 's-Hertnrier

### Components in Press-Fit Technology **ROHS AND LEAD-FREE POWERELEMENTS**







### Components in Press-Fit Technology **ROHS AND LEAD-FREE POWERELEMENTS**



![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

# PRESS-FIT TECHNOLOGY IN (HV) APPLICATIONS

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

# Press-Fit Technology in (HV) Applications <u>USE CASES</u>

#### Suitable for a wide range of applications

- For high current and high voltage applications, e.g. high current and HV PDU's, due to the high current carrying capacity
- For high-frequency applications, as PCB impedances can be used selectively
- For use under **extreme environmental conditions**, as very robust and vibration-resistant
- For **installation in limited space**, as the double-sided assembly allows for a very compact realization of the modules
- For reducing costly and error-prone wiring harnesses

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Picture_2.jpeg)

ntrum 's-Hertnrient

E

## Press-Fit Technology in (HV) Applications **PDU COMPONENTS - EXAMPLES**

![](_page_26_Picture_1.jpeg)

#### **CONTACTORS & FUSES**

- Integration of different types of contactors and fuses (from different brands) with direct contact to PCB over Powerelements
- Connection of coils and auxiliary contacts with direct contact to PCB or small wire harness (depending on contactor type)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

27 juni 2023 | 1931 Congrescentrum 's-Hertogenbos

## Press-Fit Technology in (HV) Applications **PDU COMPONENTS - EXAMPLES**

#### CONNECTORS

- Integration of different types of connectors (from different brands)
- Advantage: busbar output of the connector allows to connect to the PCB without HV cables

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

## Press-Fit Technology in (HV) Applications **PDU COMPONENTS - EXAMPLES**

#### **MEASUREMENTS & MONITORING**

- Possibility to integrate current or voltage measurement from the market
- Possibility to integrate isolation monitoring modules from the market

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

# Press-fit Technology CONCLUSIONS

- High Current Capacity
- Gas-tight connection
- Excellent mechanical stability and vibration resistance
- No thermal stress during assembly
- Significantly lower contact resistance
- No danger of cold solder joints
- Easy Double Sided PCB assemblies

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

### Würth Elektronik ICS YOU CAN FIND US AT BOOTH 24

#### Germany Niedernhall

Würth Elektronik ICS GmbH & Co. KG Intelligent Power & Control Systems Gewerbepark Waldzimmern – Würthstraße 1 74676 Niedernhall – Deutschland Tel.: +49 7940 9810-0 – Fax: +49 7940 9810-1099 ics@we-online.de

FRANCE

Würth Elektronik France Intelligent Power & Control Systems

+33 388 112600 ics-france@we-online.com INDIA Mysore & Bangalore

Wuerth Elektronik India Pvt Ltd Intelligent Power & Control Systems

+91 821 2305325 ics.sales-india@we-online.com ITALY San Giovanni Lupatoto (VR)

Würth Elektronik ICS Italia s.r.l. Intelligent Power & Control Systems

+39 458 752222 ics-italy@we-online.com C YouTube

Unser Imagefilm verfügbar auf unserer Website und YouTube

#### UNITED KINGDOM Manchester

Wurth Electronics UK Ltd. Intelligent Power & Control Systems

ics-uk@we-online.com

**USA** Miamisburg (OH)

Wurth Electronics ICS, Inc. Intelligent Power & Control Systems

+1 877 6902207 cs@we-ics.com

# **EDECTRONICS**

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE

# REFERENCE MATERIAL THE PRESSING PROCESS

ELECTRONICS

Energy Storage even

ENERGY STORAG

![](_page_31_Picture_2.jpeg)

E Kry Alter

### The Pressing Process PRINTED CIRCUIT BOARD

#### **Specifications**

- Three parameters have to be taken into account when manufacturing the PCBs to ensure suitability for the press-fit technology:
  - Drill diameter and final diameter of the metallised hole
  - Design of the copper layer in the press-fit hole
  - Condition of the PCB surface
- Optimum PCB thickness is between 2.0 mm and 3.2 mm, but must be at least 1.5 mm.
- Proven finishes include chemical tin (preferred), chemical silver, chemical nickel/gold, HAL and lead-free HAL.

| Würth Elektronik ICS – Press-fit Specification 5.1                                                    |      |                                             |                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------|------|---------------------------------------------|--------------------------------------------------------|--|--|--|
| Drill Ø                                                                                               |      | drill tool<br>drill hole                    | 1,60 mm<br>1.60 – 0.025 mm                             |  |  |  |
| Cu                                                                                                    | Co-H | Cu – in Hole<br>Annular Ring                | Average 30 – 60 μm<br>min 25 μm, max 80 μm *<br>125 μm |  |  |  |
| End Ø                                                                                                 |      | depends on surface<br>HAL<br>chem. surfaces | (1.45 +/- 0.05 mm)<br>(1.475 +/- 0.05 mm)              |  |  |  |
| Note: For Press-fit Technology drill diameter an copper thickness are fix<br>End Ø for reference only |      |                                             |                                                        |  |  |  |

| Priority | Basic data of the printed circuit board |                             |  |  |  |  |  |
|----------|-----------------------------------------|-----------------------------|--|--|--|--|--|
| 1        | Tool diameter<br>Hole diameter          | + 0.00 / - 0.025 mm         |  |  |  |  |  |
| 2        | Cooper in Hole                          | 30 - 60 µm                  |  |  |  |  |  |
| 3        | Final diameter                          | serves only for orientation |  |  |  |  |  |
| 4        | Final diameter tolerance                | serves only for orientation |  |  |  |  |  |

![](_page_32_Picture_10.jpeg)

\* single measurement points in microsection

# The Pressing Process **PRESS-IN TOOLS**

#### Manual pressing-in

- Components such as Powerelements, sockets and connectors can be pressed into the PCB manually in a simple and uncomplicated way; a simple toggle press is sufficient.
- The PCB is supported by a pad during the press-fit process to prevent bending.
- With the appropriate tools, several Powerelements can be pressed-in at the same time.

#### **Processing instructions and features**

- Press-in force: min. 60 N, max. 250 N per pin
- Holding forces 60 % to 80 % of the press-in force
- Press-in speed 100 250 mm/min
- Application temperature range: -40 °C to +150 °C

![](_page_33_Picture_10.jpeg)

![](_page_33_Picture_11.jpeg)

### Basics of Press-fit Technology **QUALIFICATION**

#### Standard tests according to applicable standards

#### **Climatic tests**

- IEC 60068-2-1 Cold and -2 Dry heat
- IEC 60068-2-11 Salt spray and -52 Salt spray, cyclic
- IEC 60068-2-14 Change of Temperature
- IEC 60068-2-30 Damp heat, cyclic and -78 steady state
- IEC 60068-2-38 Temperature/humidity cyclic
- IEC 60068-2-60 Flowing mixed gas corrosion

#### **Mechanical tests**

- IEC 60068-2-6 Vibration (Sinusoidal)
- IEC 60068-2-27 Shock and -29 Bump
- IEC 60068-2-32 Free fall
- IEC 60068-2-64 Vibration, broadband random and guidance
- IEC 60068-2-80 Vibration Mixed mode

#### International standard norm for road vehicles

 ISO 16750: Environmental conditions and electrical testing for electrical and electronic equipment

#### Standards for connectors

- IEC 60512-2-2 Contact resistance
- IEC 60512-2-5 Electrical continuity and contact resistance tests

### Degrees of protection provided by enclosures (IP Code) according to IEC 60529

#### Press-in connections IEC 60352-5

![](_page_34_Picture_22.jpeg)

![](_page_34_Picture_23.jpeg)

![](_page_34_Picture_24.jpeg)

![](_page_34_Picture_25.jpeg)

![](_page_34_Picture_26.jpeg)

![](_page_34_Picture_27.jpeg)

### Basics of Press-fit Technology **QUALIFICATION**

#### Own tests or tests carried out by the customers

#### Press-in zone

- Drill diameter
- Copper thickness of the sleeve (comparison PTH\*/NPTH\*\*)
- Holding forces as a function of copper thickness in the sleeve
- Correlation between holding forces and current carrying capacity
- Holding forces before and after vibration
- Torques
- Sleeve surfaces
- Cold welding
- Diffusion Cu/Sn

#### Simulations

- Current carrying capacity of the press-in zone
- Torque load of Powerelements

#### Manufacturing technologies

- Pressing-in before and after coating the assembly
- Influence of potting
- RoHS conformity

#### **Complete assemblies**

- Insertion and withdrawal forces
- Long-term stability
- Arc testing
- Comparison of press-fit technology and soldering technology

![](_page_35_Picture_24.jpeg)

![](_page_35_Picture_25.jpeg)

![](_page_35_Picture_26.jpeg)

\*PTH= plated-through hole \*\*NPTH= not plated through hole

![](_page_35_Picture_28.jpeg)

![](_page_35_Picture_29.jpeg)

# REFERENCE MATERIAL LEAD-FREE POWERELEMENTS

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

**38** | LEAD-FREE POWERELEMENTS POWER ELECTRONICS & ENERGY STORAGE EVENT 2023

### Directives BACKGROUND TO LEAD

![](_page_38_Picture_1.jpeg)

### Lead ...

- is a heavy metal and
- is generally classified as toxic
- in the human body, it damages the nervous system, various organs or even the hematopoietic system
- has been used for years with increasing restrictions but with exceptions

### Lead has advantageous properties like ...

- flexibility & corrosion resistance
- improved sliding and friction behavior
- excellent machinability as a component of copper alloys

| Lead<br>82 |
|------------|
| Ph         |
| 207.2      |

![](_page_38_Picture_12.jpeg)

![](_page_38_Picture_13.jpeg)

![](_page_38_Picture_14.jpeg)

### Directives BACKGROUND TO LEAD

![](_page_39_Picture_1.jpeg)

Lead is present in the copper alloy "**machining brass**" (CuZn39Pb3) in many high current contacts (incl. Original Powerelements) with approx. **3 % mass content**.

#### **Explanation of terms**

- Lead-Free: Elimination of lead additive, for example in copper alloys, with a minor limit of maximum 0.1 % lead content
- **Conformity:** Conformity is given if the approved limits for the hazardous substances are complied with.

![](_page_39_Picture_6.jpeg)

![](_page_39_Picture_7.jpeg)

![](_page_39_Picture_8.jpeg)

### Directives **ROHS DIRECTIVE**

![](_page_40_Picture_1.jpeg)

**RoHS** Directive (Restriction of Hazardous Substances) 2011/65/EU serves to restrict the use of hazardous substances such as lead in **electrical and electronic equipment** (EEE).

- Compliance with RoHS is a prerequisite for the application of CE markings on equipment
- Lead as a substance of the RoHS restrictions has a defined permissible concentration of **max. 0.1 %.** of value by weight in homogeneous materials
- RoHS **exemption 6c:** allows up to 4 % lead content in copper alloys

![](_page_40_Picture_6.jpeg)

| Extract fro | om RoHS Directive 2011/65/EU [ V                 | ersion from 01/09/2020                                                                                                                                              |  |
|-------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6(c)        | Copper alloy containing up to 4 % lead by weight | Expires on:                                                                                                                                                         |  |
|             |                                                  | <ul> <li>— 21 July 2021 for categories 1-7 and 10,</li> </ul>                                                                                                       |  |
|             |                                                  | <ul> <li>— 21 July 2021 for categories 8 and 9 other than<br/>in vitro diagnostic medical devices and<br/>industrial monitoring and control instruments,</li> </ul> |  |
|             |                                                  | <ul> <li>— 21 July 2023 for category 8 in vitro diagnostic<br/>medical devices,</li> </ul>                                                                          |  |
|             |                                                  | <ul> <li>— 21 July 2024 for category 9 industrial moni-<br/>toring and control instruments, and for<br/>category 11</li> </ul>                                      |  |

#### Update 21st July, 2021:

Due to some requests for extension, exemption 6c will remain valid beyond July 21, 2021 until the EU Commission has made a decision on these requests.

![](_page_40_Picture_11.jpeg)

### Directives **IMPACT ON PROJECTS & PRODUCTS**

![](_page_41_Figure_1.jpeg)

|                                           | 2024 |           | 2022                                           | 2027             | 2025          | 2026       | 2022            | 2020                          | 2020                                        | 2020                         | 2021        |
|-------------------------------------------|------|-----------|------------------------------------------------|------------------|---------------|------------|-----------------|-------------------------------|---------------------------------------------|------------------------------|-------------|
|                                           | 2021 | 2022      | 2023                                           | 2024             | 2025          | 2026       | 2027            | 2028                          | 2029                                        | 2030                         | 2031        |
| Scenario 1                                | 6c   | 6c        | Sunset<br>phase                                | "Status Q        | Quo" EU-Co    | mmission w | ill decide Q₄   | 4 2022                        |                                             |                              |             |
| Scenario 2                                | 6с   | Exemț     | otion 6c                                       | Si<br>P          | unset<br>hase | Scenario   | o with 3 yea    | nrs extention                 |                                             |                              |             |
| Scenario 3                                | 6с   |           | Exemp                                          | tion 6c          |               | 2          | Sunset<br>phase | Recomn<br>Extentio<br>21 July | nendation Ö<br>n of the exe<br>2026 for all | ko-Institut e<br>mption unti | e. V.*<br>/ |
| Exemplary<br>project                      |      | Developme | nt                                             |                  |               | Pro        | oduct life cv   | /cle                          | 2020 joi uii                                | categories                   |             |
| schedule                                  |      |           |                                                |                  |               |            |                 |                               |                                             |                              |             |
| <b>21.07.2021</b><br>Original expiry date |      | Q<br>El   | <b>4 2022</b><br>J-Commission<br>ELV Directive | proposes revisio | on            |            |                 |                               |                                             |                              | 4           |

![](_page_41_Picture_3.jpeg)

- Re-Design?
- Qualification?
- Effort & Cost?

\*https://rohs.exemptions.oeko.info/news

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

### Directives REACH

![](_page_42_Picture_1.jpeg)

**REACH** Regulation (**R**egistration, **E**valuation, **A**uthorisation and **R**estriction of **Ch**emicals) EC 1907/2006 regulates the production, marketing and use of chemical substances and mixtures made from them.

- REACH maintains a candidate list of substances of very high concern SVHC (Substance of Very High Concern)
- According to Article 33, this results in an **information obligation** along the supply chain for semi-finished products or other products containing a substance from the candidate list with a mass content of ≥ 0.1 %.
- Lead is on the SVHC list.
- New from 2021: SCIP database (Substances of Concern In articles as such or in complex objects / Products) for product sellers with the obligation to register in addition to IMDS (part number, designation, proportion of SVHC substance)

![](_page_42_Picture_7.jpeg)

![](_page_42_Picture_8.jpeg)

![](_page_42_Picture_9.jpeg)

### Directives REACH

![](_page_43_Picture_1.jpeg)

**ELV** (End of Life Vehicles) "End-of-Life Vehicle Directive" 2000/53/EG regulates the recovery of materials from motor vehicles through recycling.

- As a restricted substance, lead has a defined maximum allowable concentration of max.
   0.1% (weight percent).
- Exemption II/3 allows up to max. 4% lead content in copper alloys.
- After the expiry of a release, the component may no longer be used in a new vehicle.

![](_page_43_Picture_6.jpeg)

"End-of-Live Vehicle Directive" 2000/53/EG (ELV – End of Live Vehicle) | Version of 06/03/2020

| 3. | Copper alloys containing up to 4 % lead by weight | ( <sup>1</sup> ) This exemption shall be reviewed in 2021. |
|----|---------------------------------------------------|------------------------------------------------------------|
|----|---------------------------------------------------|------------------------------------------------------------|

![](_page_43_Picture_9.jpeg)

![](_page_43_Picture_10.jpeg)

### Directives SUMMARY

![](_page_44_Picture_1.jpeg)

### Relevant directives & regulations with a limit value of max. 0.1 % lead content

![](_page_44_Picture_3.jpeg)

|                                                             | Scope of application                           | Criteria                                                                                 | Status                                                                                                                              | Possible consequence                                                                                          |  |  |  |
|-------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| RoHS                                                        | Elelectrical and electronic<br>equipment (EEE) | Maximum concentration value<br>by weight in homogeneous<br>materials                     | Exemption 6c enables copper<br>alloy containing up to 4 % lead by<br>weight, expires July 2021<br>(depending on category later)     | Without conformity with the<br>applicable RoHS requirements no<br>"making available on the market"<br>for EEE |  |  |  |
| ELV                                                         | Motor vehicles                                 | Maximum concentration value by weight of a component                                     | Exemption II/3 enables copper<br>alloy containing up to 4 % lead by<br>weight; will be reviewed in 2021                             | No use of component after<br>expiration of exemption in new<br>vehicles                                       |  |  |  |
| REACH                                                       | Chemical substances                            | Maximum concentration value<br>by weight in the product of the<br>respective value chain | Lead is on the List of Substances<br>of Very High Concern (SVHC).<br>Information along the supply<br>chain is required (Article 33) | Increased documentation effort<br>also for the new SCIP database                                              |  |  |  |
| There are a large number of additional directives worldwide |                                                |                                                                                          |                                                                                                                                     |                                                                                                               |  |  |  |

![](_page_44_Picture_5.jpeg)