

Scaling from lab to prototype - the role of the supply chain

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch **ENERGY STORAGE**

A net zero energy system needs both green electrons & molecules

We need deep electrification to minimize losses

Batteries needed for deep electrification

We need green H_2 for the applications we cannot electrify

<u>Affordable Green H_2 is needed to sustain welfare</u>

Battolyser® is the only EU compliant electrolyser technology

sell power when prices are high

	Embedded in policy Renewable Energy Directive Limiting policy requirement: Hourly temporal correlation required for producing <i>renewable hydrogen</i> and claim EU subsidies/credits.	First proposal: Q1 2023 Net Zero Industry Act Limiting policy requirement: At least 40% of all hydrogen consumed in EU need to be produced by electrolysers manufactured in the EU	First proposal: Q1 2023 Critical Raw Materials Act Limiting policy requirement: Max. 65% of strategic raw materials across electrolyser value chain sourced from one non-EU nation
AEL, PEM, SOEC	Hourly temporal correlation requires flexibility that AEL & SOEC technologies cannot meet	Limited EU manufacturing capacities except for AEL, no existing NL manufacturing capacity	PEM and SOEC need PFAS-based materials & Iridium, Platinum and Yttria (highly China dependent); some AEL use critical raw materials (e.g. Rodenium and Class 1 Ni)
	Ability to start/stop each hour to produce fully green H2, and even	First manufacturing capacity in NL	No critical raw materials, no PFAS

ergy Storage even ENERGY STORAGE

The science...

The science

Source: Battolyser Systems analysis, Battolyser Systems data

Charging (storing energy in the form of electrons)

 $Ni(OH)_2 + OH^- \rightarrow NiOOH + H_2O + e^ Fe(OH)_2 + 2e^- \rightarrow Fe + 2 OH^-$

 $2 H_2 0 + 2e^- \rightarrow H_2(g) + 20H^ 4 0H^- \rightarrow 0_2(g) + 2 H_2 0 + 2e^-$ Oxidation of Ni phase, reduction of Fe phase \rightarrow cell potential window wide enough to include both HER and OER

Hydrogen Evolution Reaction (HER)

Oxygen Evolution Reaction (OER)

The science

Source: Battolyser Systems analysis, Battolyser Systems data

How does it work?

In a first electrochemical reaction, the electrodes are charged and store electrons

2 When overcharged, hydrogen and oxygen are formed in a subsequent reaction Cheap renewable energy stored in electrons and molecules!

& Energy Storage event ENERGY STORAGE

ntrum 's-Hertogenboscl

POWER

The science

Discharging (when electricity price is high)

 $NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$

 $Fe + 2 OH^- \rightarrow Fe(OH)_2 + 2e^-$

 $H_2 + 20H^- \rightarrow 2 H_2 0 + 2e^ O_2 + 2 H_2 0 + 2e^- \rightarrow 4 0H^-$

Battery function assists in 'cleaning up' the system when not producing hydrogen - essential for intermittency

Change in potential also allows recombination reactions to happen

Source: Battolyser Systems analysis, Battolyser Systems data

6

nergy Storage ever

FCTRONICS

Battolyser is the next generation electrolyser..

Source: Battolyser Systems analysis, Battolyser Systems data

Next steps

BL250 - ready 2024

- Prototype unit
- 1 MW system (250 kW/stack)
- Skid based
- Stack and system design in house
- Stack assembly in house
- Components and system manufacturing with partners

nergy Storage even ENERGY STORAGE

ELECTRONICS

Next steps

Automated assembly

- Currently manual stacking process
- With partners developed into automated line

BL1000 - 2025

- Commercial unit
- 1 MW/stack)
- Stick based
- Stack design and assembly in house
- System design and integration: EPC
- Components and system manufacturing with partners

www.battolysersystems.com

Pieter@Battolysersystems.com

Power Electronics & Energy Storage event 27 juni 2023 | 1931 Congrescentrum 's-Hertogenbosch ENERGY STORAGE