Power distribution in fuel cell and battery electric aircraft

Rutger Kersjes University of Twente

Power Electronics & Energy Storage event 28 mei 2024 | 1931 Congrescentrum 's-Hertogenbosch **ENERGY STORAGE**

Agenda

- 1. Electrification of aircraft
- 2. Power distribution systems
- 3. Multi-objective vector modulation
- 4. Experimental validation
- 5. Conclusions

Electrification of aircraft

Pipistrel Velis Electro of NLR, retrieved from: https://www.nlr.nl/aandachtsgebieden/ strategischethemas-2022-2025/thema-duurzame-luchtvaart/pipistrel/

- Reducing carbon emissions
- Battery electric prototypes
 - Baseline system
 - Limited flight time
 - Specific energy and power

Existing power distribution system

- Redundant battery packs
- Variable bus voltage
 - SoC and load dependent
- Payload of 172 kg
- Flight range of 50 minutes

ELECTRONICS

ENERGY STORAGE

Flight load profile

- Motor power usage
 - Based on flight data
- Battery utilization
 - Peak power
 - Dynamic power
- Fuel cell utilization
 - Cruise power

Hydrogen range extender

- Independent energy and power
- Load dependent output voltage
- Static loading

Storage type	Weight (kg)	Energy (kWh)	Power (kW)
Battery pack	72	12	40
H_2 storage	20	100	-
Fuel cell	50	-	30

2. Power distribution systems

- Power electronics as interfaces
- Match voltages
- Control power distribution
- Reduce complexity

7

Benchmark solution

- Two stage conversion
- Interleaved boost converter
- Independent power control
- Commercially available

Dual-DC-port inverter

- Modified T-type inverter
- Additional switching states
- Multi-objective vector modulation
- Comparison with benchmark:
 - + 3 kg reduction in passive components
 - Similar switching losses
 - 8% increase in AC current

3. Multi-objective vector modulation

- Generate U_{ref}
 - Set by motor FOC
 - Maximize $|U_{ref}|$
- Distribute DC power
 - Set by energy management
 - Enable battery charging

UNIVERSITY

Vector space

- Unbalanced DC voltages
- 27 possible switching states
 - 13 independent base vectors

Vector space addition

- 13 independent base vectors
- Port vectors
 - $U_1 = d_{1a}U_{1a} + d_{1b}U_{1b}$
 - $U_2 = d_{2a}U_{2a} + d_{2b}U_{2b}$
 - $U_{ref} = U_1 + U_2$
- Limited vector duty cycles

•
$$d_{1a} + d_{1b} + d_{2a} + d_{2b} + d_0 \le 1$$

Available vector magnitude

- Single basic vector limit
 - $|U_x| \leq \frac{2}{3} V_{DCx}$
- Uniform limit of one port
 - $|U_{\chi}| \leq \frac{1}{\sqrt{3}} V_{DC\chi}$
- Shared vector limit

•
$$\frac{|U_1|}{\frac{V_{DC1}}{\sqrt{3}}} + \frac{|U_2|}{\frac{V_{DC2}}{\sqrt{3}}} \le 1$$

Available port power

- Larger PF when θ_{I-2} is small
- Larger $|U_2|$ when θ_{2-ref} is small
- *P_{FC}* maximized between angles
 - State dependent optimum
 - Approximated with equations

4. Experimental validation

OF TWEENTE. Power Electronics & Energy Storage event EXERCISE ENERGY STORAGE 28 mei 2024 | 1931 Congrescentrum 's-Hertogenbosch

Experimental setup

UNIVERSITY OF TWENTE.

Power Electronics & Energy Storage event

EVERGY STORAGE

Experimental results

- Descent scenario
 - 1900 RPM, 0 Nm
 - Low PF
 - 126° from U_1 to U_2
- P_{FC} reference at 375 W
 - 380 +- 8 W output

5. Conclusions

- Successful integration of H2
- Low weight alternative
- Remaining research
 - Efficiency
 - EMC
 - Energy management

Thank you

- Want to know more?
 - Ask your question here
 - Find me at our stand
 - Send me an e-mail:

Rutger Kersjes

r.h.kersjes@utwente.nl

Power Electronics & Energy Storage event 28 mei 2024 | 1931 Congrescentrum 's-Hertogenbosch

ENERGY STORAGE