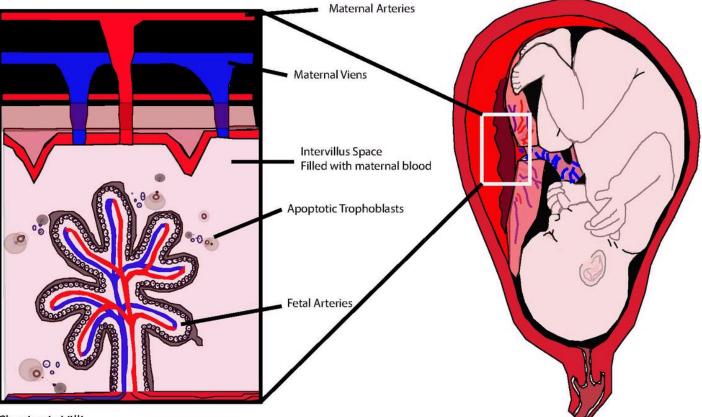
Cell free fetal DNA in maternal blood

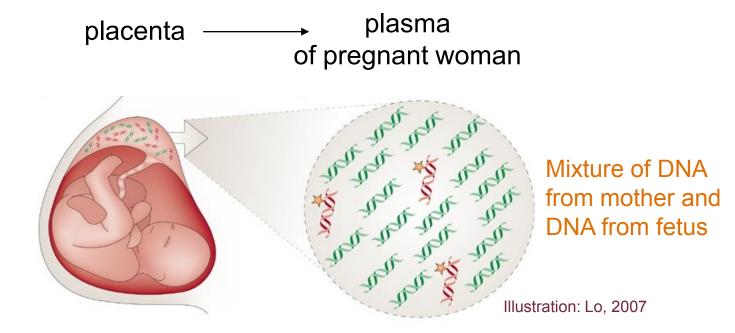
From science to a nationwide screening program Ellen van der Schoot, Sanquin

NOVEMBER 26TH 2013 HOLIDAY INN LEIDEN


Prenatal Diagnostics

- Invasive :
 - Fetal DNA obtained from amniocytes
 - Fetal DNA obtained from chorionvilli
- Non-invasive:

 Fetal DNA or RNA from circulating fetal cells
Fetal DNA (or RNA) from maternal plasma YM Lo et al., Lancet 1997;350:485-7

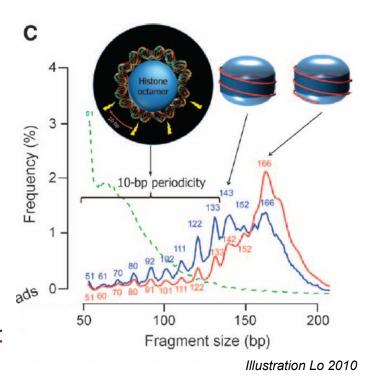

Source of fetal DNA: apoptotic syncitiotrophoblast

Chorionic Villi

Cell-free fetal DNA in maternal plasma

Excess of maternal cell-free DNA:

- 11-17 weeks: 3% fetal DNA (range: 0,4% 12%)
- 37-43 weeks: 6% fetal DNA (range: 2,3% 11,4%)



Cell free DNA is derived from apoptotic cells

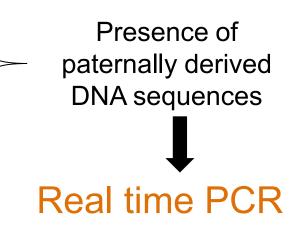
• Present in plasma as nucleosomes

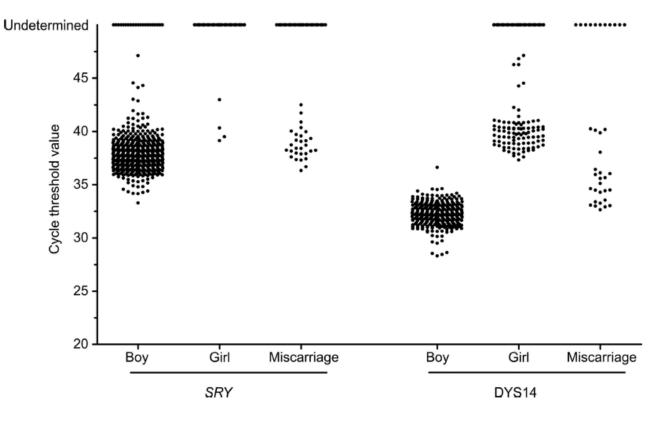
Majority of cell free fetal DNA < 143 bp

- Cell free maternal DNA: majority >143bp:
 - Mainly derived from maternal leukocytes
 - Increased in various conditions: e.g. sepsis, autoimmune diseases, pregnancy

Concentration of cell free fetal DNA

- Earliest presence: 5 weeks of gestation
- Very low concentration of fetal DNA in maternal plasma
 - 16th week: 25 genome equivalents/mL of plasma (range 3-70 geq/mL)
 - 30th week: 290 genome equivalents/mL of plasma (range 50-1000 geq/mL)
- Half-life: 15 minutes

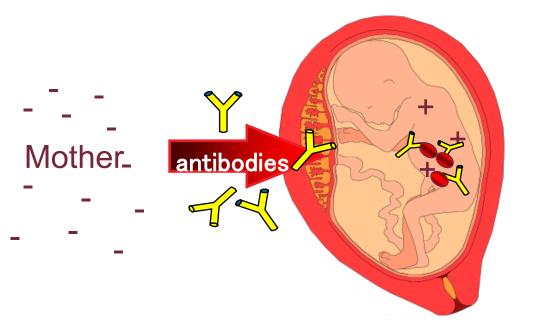

- Large European Consortium (25 laboratories, 2005-2010)
 - Non Invasive Prenatal Diagnostics
- First clinical applications have been developed in this network
- Standardized fetal DNA isolation procedure from plasma,
 - Plasma standards (NIBSC)
 - Proficiency testing


Applications of cell free DNA

- Fetal sex determination
- Fetal genotyping for bloodgroups
- Diagnosis of monogenic inherited disorders
 - E.g. Thalassemia, Sickle cell anaemia
- Since Next generation Sequencing:
 - Aneuploidies, e.g. Trisomy 21
 - Inherited diseases

Reliability of fetal sex determination : 100%

N=200


Scheffer et al.. Obstet Gynecol 2010

Low concentration ccfDNA : need for fetal identifier

- **Polymorphisms** : Mother negative , Father (homozygous) positive
 - Panel of SNPs
 - Panel of Ins/Del polymorphisms
 - Panel of Copy Number Variation (0,1,2)
 - Laborious, large panel
- Universal fetal identifier : Mother negative, fetus positive
 - Epigenetic marker: Hypermethylated RASSF1a
 - Not very reproducible, lower sensitivity

Fetal blood group typing

1) Red cells: HDFN

Hemolytic Disease of Fetus/newborn ⇒ Kernicterus

2) Platelets: FNAITP

Fetal/neonatal alloimmune thrombocytopenia => Intracranial hemorrhages

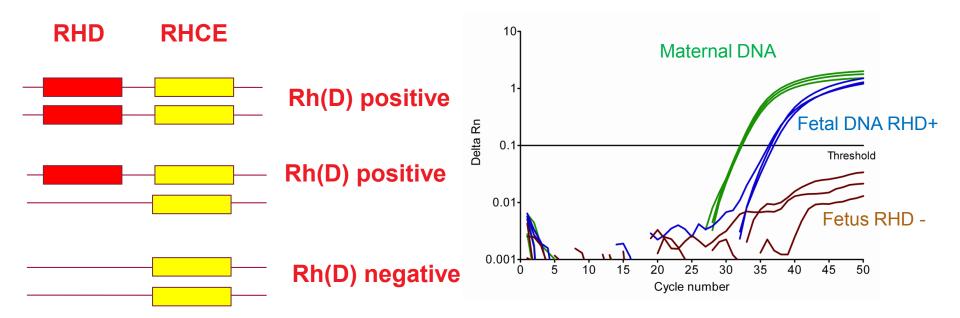
Fetal blood group typing

- Diagnostics:
 - In alloimmunized women to start timely treatment
- Screening
 - o To guide anti-D immunoprophylaxis

Nation-wide fetal RHD genotyping introduced July2011 in the Netherlands

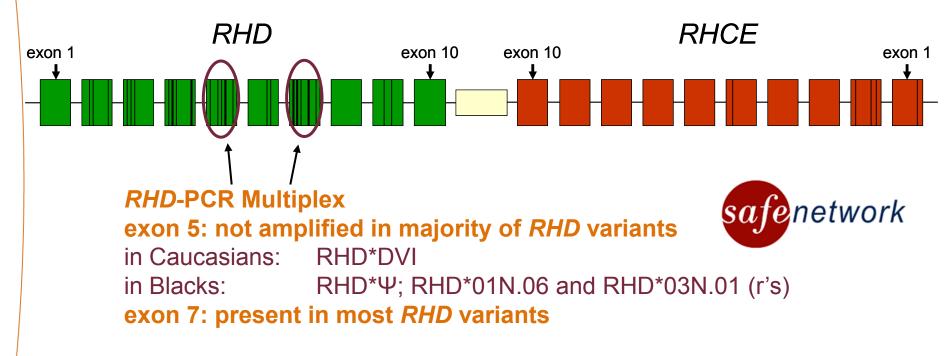
To prevent immunization during pregnancy ALL D-negative pregnant women get anti-D immunoglobulin

Anti-D lg:


- Bloodproduct
- Volunteer, hyperimmunized donors
- World wide shortage
- Costs

40% of D-negative women are carrying D negative fetuses

Rh-system:


Coded by 2 homologous genes: RHD en RHCED-negativity in Caucasians is caused by deletion of RHD gene

Design fetal RHD typing

Scoring algorhitm:

Ct <40 is positive (Ct < 20 is artefact) Exon is positive if \leq 1 replicate is negative Sample is positive if at least 1 exon is positive

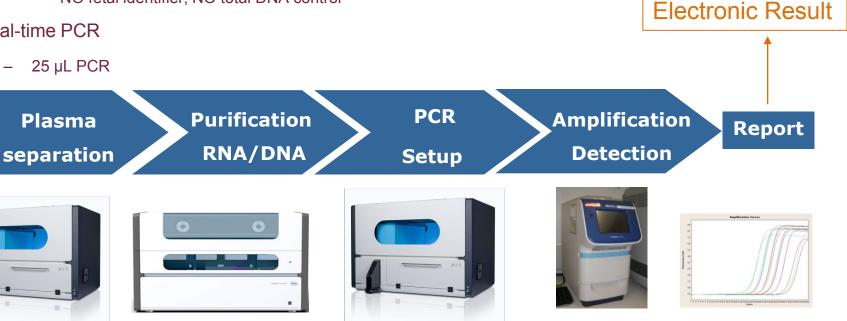
Fully automated approach

Centralized at one laboratory (Sanguin, Amsterdam)

7-8 cc EDTA anti-coagulated blood

DNA isolation from 1 ml of plasma

Eluate 50 µl •

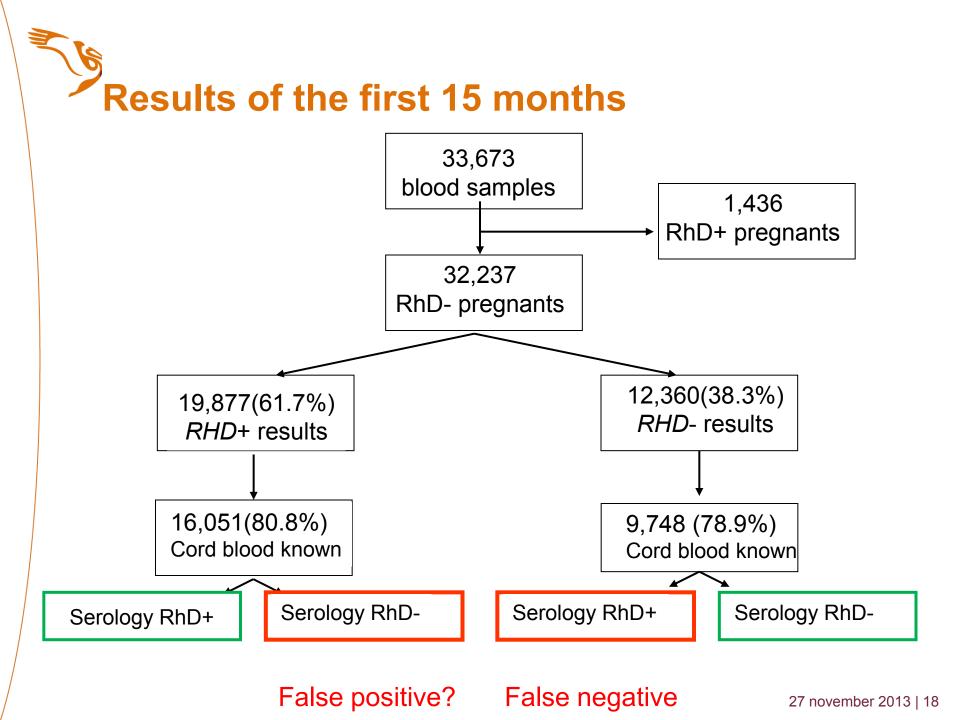


NO fetal identifier, NO total DNA control •

MagnaPure 96

25 µL PCR

Xyril



Aim of the study

• Evaluate the sensitivity and specificity of the new fetal *RHD* screening program introduced in July 2011

 Prerequisite of the Dutch anti-D prophylaxis programme: <u>Sensitivity</u>: <0.25% False negative/ all pregnancies
=estimated false negative rate cord blood serology (Koelewijn et al. 2008, Legler et al. 2009)
<u>Specificity</u>: no fixed target

In the first 15 months all cord blood samples were sent to Sanquin

8 false negative result:

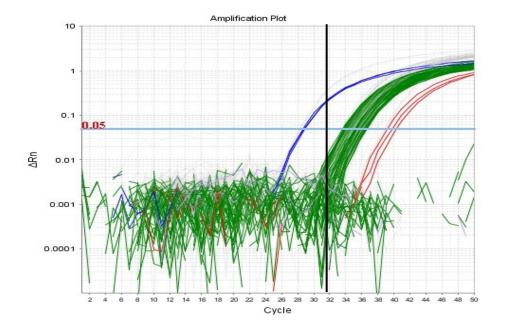
Repeat testing

- DNA fingerprintin blood/buccal swab
- *RHD*-PCR on cor
- Manual DNA isola
- Monoplex exon 5 and mRASSF1a, E

Factor 100 1000 RHD exon 5 900-RHD exon 7 800-700-600· 2 500-400-300-200-100-16.0^{-36.5} 5.37.0 2⁵ 3⁵ 3⁵ 3⁵ 3⁶ 3⁵ NO 315 30 305 Ct value

<u>Results</u>

- Sample mix up: n=0
- Fetal DNA concentration low: n=6
- Technical failure or putative technical failure: n=2



Evaluation of false positive results (0.88%) PCR algorithm is aimed to prevent false negative results

- I. Aspecific amplifications are scored positive : 0.47%
- II. Fetal variants are scored positive by PCR, but might be missed by serology (0.09%) or do not lead to RhD-expression : 0.18%
- III. All D-negative mothers carrying non-functional *RHD* alleles or variant RHD alleles are scored positive : 0.22%

III. Maternal RHD-variants

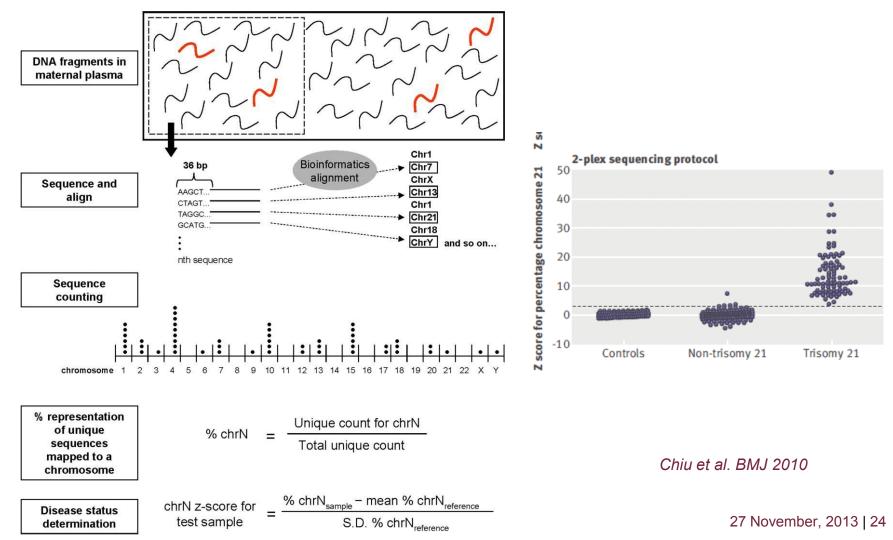
Amplification of maternal *RHD* DNA hides fetal DNA

All maternal variants have been analyzed

=> Known and new RHD variant genes

Conclusions on fetal DNA typing

- High level of reliability of fetal RHD typing
 - False negativity: 0.03% (95% CI 0.01 0.05%)
 - False positivity: 0.88% (95% CI 0.77 1.00%)
- If fetal *RHD* typing is performed around week 27 of pregnancy, cord blood RhD serology can be safely omitted



Cell free fetal DNA for genotyping fetus

- Genotyping assays can detect all paternally inherited mutations
- By "counting" or "allelic ratio" also presence of maternal alleles can be shown
- But MOST IMPORTANTLY:
 - Next generation Sequencing opened the possibility of NIPD for aneuploidies
 - Whole genome sequencing of fetus (Lo YM et al. Sci Transl Med. 2010)

Trisomy testing by NGS

Sanquin Blood Supply Trisomy testing is available in US, Germany, Belgium

• Sensitivity and Specificity > 99% in high risk population

• In the US commercial assays available:

•

Cable in the United States.*					
Test	Company	U.S. Launch Date	Cost	Sensitivity	Specificity
			\$	percent	
Verifi	Verinata	February 2012	1,200 (cost sharing - capped at 200) I)	Trisomy 21, >99.9; trisomy 18, 97.4; trisomy 13, 87.5	Trisomy 21, 99.8; trisomy 18, 99.6; trisomy 13, >99.9
MaterniT21	Sequenom	October 2011	2,762 (cost sharing capped at 235)	Trisomy 21, 99.1; trisomy 18, >99.9; trisomy 13, 91.7	Trisomy 21, 99.9; trisomy 18, 99.6; trisomy 13, 99.7
Harmony	Ariosa	May 2012	795	Trisomy 21, >99.9; trisomy 18, 98.1; trisomy 13, 80.0	Trisomy 21, >99.0; trisomy 18, >99.0; trisomy 13, >99.0
Panorama	Natera	December 2012†	1,495 — N ENGL J MED	Trisomy 21, 100; trisomy 18, 100; trisomy 13, 100 369;6 NEJM.ORG	Trisomy 21, 100; trisomy 18, 100; trisomy 13, 100 AUGUST 8, 2013 -

The Netherlands: NITRO consortium

- Trisomy screening is regulated by "Wet op Bevolkingsonderzoek" WBO
- Study in high risk pregnancies
 - Patients with positive "Combination test" => Will be offered NGS

Expectation:

Implementation for high risk pregnancies in 2014

Conclusions

- Cell free fetal DNA is present in variable, low concentrations in maternal plasma (10-1000 geq/ml) in the background of maternal DNA (2-10%)
- Highly stable, rapidly cleared after birth
- Derived from apoptotic placental cells
- Can reliably used for genotyping of fetus
- In the near future NIPD will completely replace invasive prenatal diagnostics