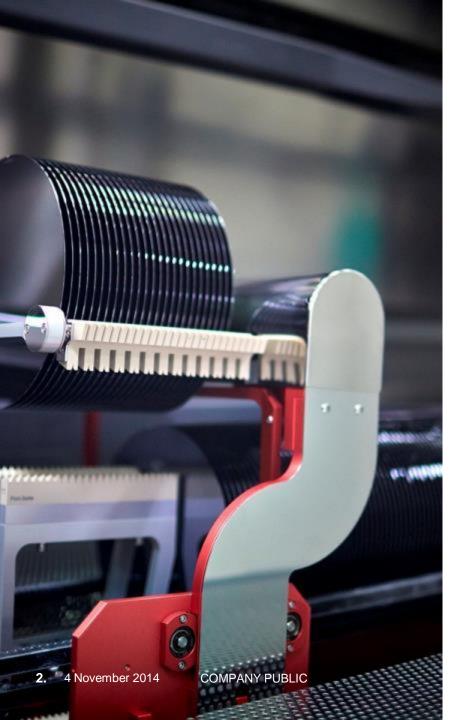
TRENDS IN ESD PROTECTION OF AUTOMOTIVE IC'S

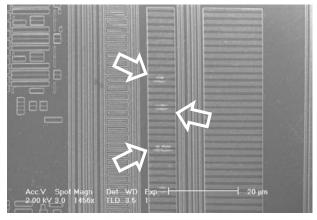
DESIGN, STANDARDS & BEYOND


BART HUITSING

ESD PRAKTIJKDAG 4 NOVEMBER 2014

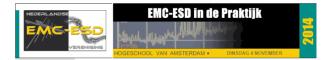
SECURE CONNECTIONS FOR A SMARTER WORLD

Presentation outline

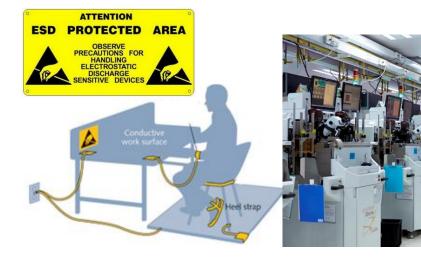

- Introduction
- Component level ESD standards
- Automotive ESD standards
- System level ESD & beyond
- On-chip ESD protection design
- Summary

Introduction

- This is a presentation about ESD standards for electronic components for the Automotive Industry
- Automotive industry have high demanding requirements
 - High reliability
 - Safety regulations
 - Hostile environment
 - Low return rate requirement
 - Long life-span
- Semiconductor footprint for automotive is ever growing
- ESD is a key design parameter to quantify robustness



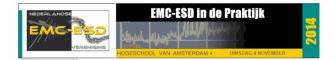
NXP supplies automotive industry


COMPONENT LEVEL ESD STANDARDS

Two worlds of ESD

Component level

- Semiconductor parts
- Handling in ESD controlled environment
- High currents, low energy



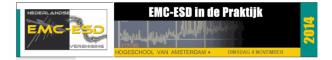
System level

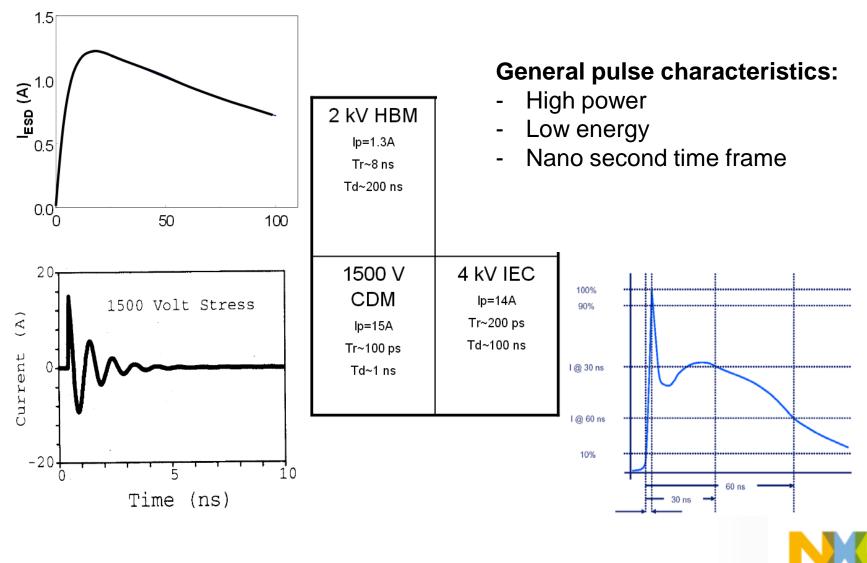

- Modules, system boards and complete products
- ESD uncontrolled environments
- Higher currents, higher but still low energy

Testing ESD susceptibility

- Standards:
 - Classification: Test results in pass/fail for a given level
 - Each standard covers a limited part or real-life ESD
 - To have reproducible results
 - Describe the waveform and test procedure
- In general, semiconductor components are qualified according these standards that address different situations:

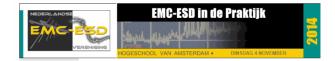
Ref [1] ... [7]


Phase out of Machine Model

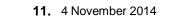


JESD22-115C (Nov 2010)	ANSI/ESD S5.2 > STM5.2			
 "Classification testing" renam 	• ANSI standard S5.2 has been			
to "Cha	tandard			
 "[]] Observed fail ocrrelated to occur at a qual Only nece 	<pre>hotivation: ures for MM are strongly HBM results. They only lower stress voltage. M yields no added value ly increases cost. </pre>			
ESD Qualification"				

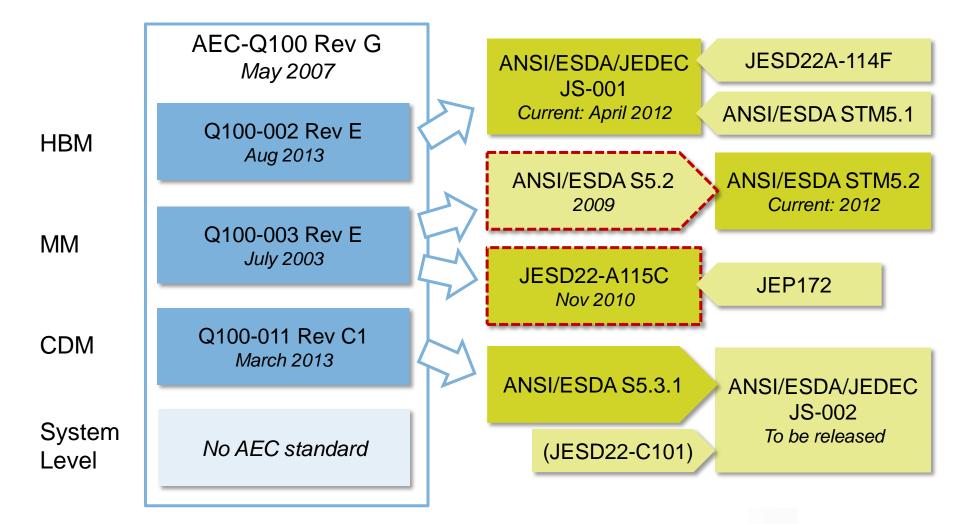
ESD Standard pulses compared



AUTOMOTIVE ESD STANDARDS



Automotive industry




- Demanding requirements
 - Hostile environment
 - Low return rate requirement
 - Long life-span
 - ... for niche market!
- The Automotive Electronics Council (AEC)
 - Issues common qualification specifications for electronics for the automotive industry
 - Lead standard: AEC-Q100 (Stress Qualification for IC's)
 - ESD and Overstress
 - Life test
 - Originally established in by Ford, Chrysler and GM in early 90's
 - NXP is Technical Committee Member since
 2005

Anatomy of AEC-Q100 Rev G (ESD only)

Recent developments in AEC-Q100

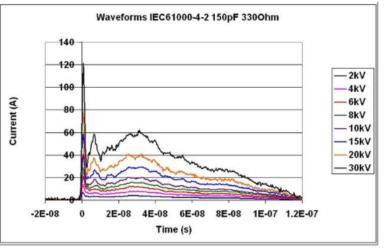
- AEC-Q100 Rev H is to be released soon:
 - Ballot passed Sept/Oct 2014
 - MM standard is removed
 - Intention to follow ANSI/ESDA/Jedec JS-002 for CDM
- ANSI/ESDA/Jedec JS-002 (CDM)
 - Second joint standard between ESD Association and Jedec
 - Merge of JESD22-C101 and ANSI/ESD S5.3.1
 - Focus on backward compatibility
 - Change from voltage level defined to current level defined stress

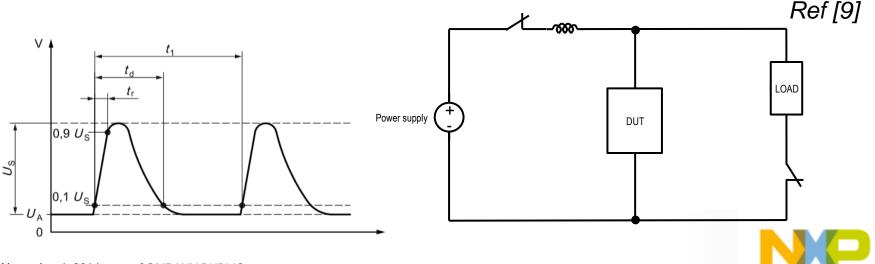
Organiza	ation	Previous step	Next step
ESDA		Accepted	Industry review
Jedec	JEDEC	Ballot passed	Approval by Board of Directors

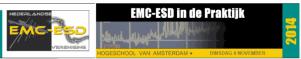
SYSTEM LEVEL ESD & BEYOND

System Level ESD

- No AEC standard because AEC is component level only
- Still, more and more customers require a component to PASS a system level requirements
- System level standard IEC-61000-4-2
- ANSI ESD SP 5.6 (Human Metal Model) for IC components



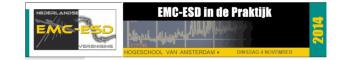

Figure 5: Measured waveforms of contact discharge from an IEC 61000-4-2 ESD gun on the prescribed calibration

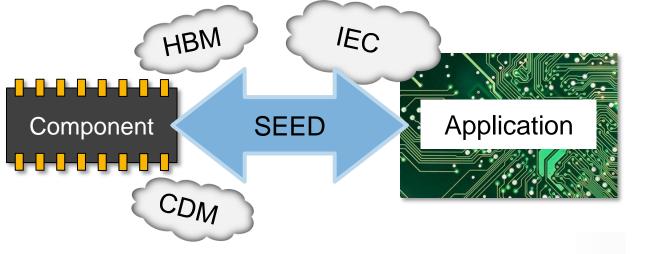


Other standards

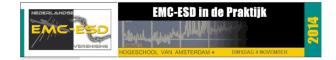
- ISO7637-2: Electrical disturbances from conduction and coupling
 - System level standard
 - Discharge / overvoltage due to change in inductive load on the wiring loom
 - Voltage spikes up to 112Volts, duration of <u>50us</u> (250x longer than HBM!)
 - No ESD test, but EOS test!

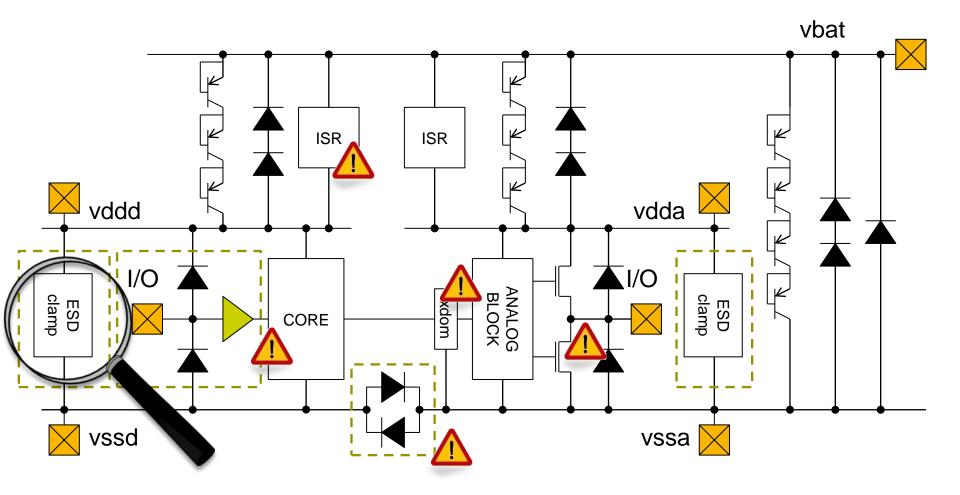
ON-CHIP ESD PROTECTION


Design for ESD robustness


- Mask sets are expensive, therefore a first-time right is eminent!
- Development of an ESD protection strategy
 - Semiconductor process knowledge
 - What can go wrong (blow-up, melt, etc)?
 - How can we prevent that?
 - Create protection infrastructure
- CAD tools
 - Simulation methods (2d simulation and/or SPICE based simulation)
 - Design verification checks. Using Programmable Electrical Rule Checksets (PERC), critical circuit topologies may be identified
- Manual review
 - Of schematic
 - Of physical layout design

System-efficient ESD Design (SEED)

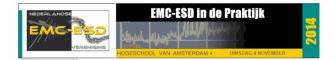

- Component level ESD does not correlate to system ESD pulses
- High HBM levels do not guarantee a ESD-safe system design, but may limit IO performance
- Understand which magnitude of stress actually arrives on the IO pin in a system application.

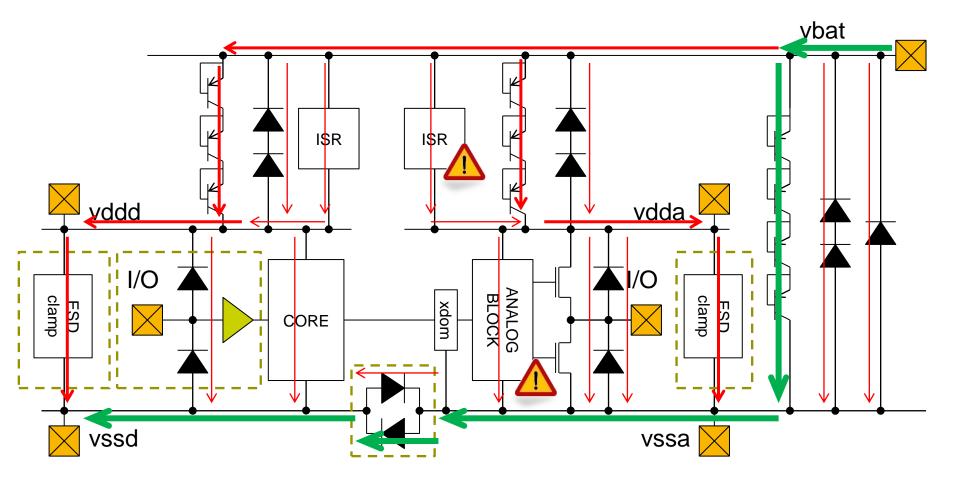


NP

Ref [8]

Semi-automatic circuit analysis





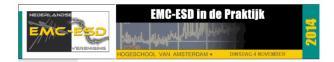
Not a real product. Illustration purpose only.

On-chip ESD simulation

Not a real product. Illustration purpose only.

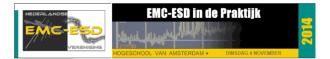
Summary

- Because the Automotive industry has high demands, design for ESD is a significant effort
- Overview of the AEC-Q100 standard is given
- Some important (expected) changes
 - Expected removal of Machine Model from AEC-Q100
 - Alignment with the soon to be released JS-002 for CDM
- For ESD robustness, engineering takes place on multiple levels
 - Device engineering, strategy development, codesign and troubleshooting
 - Usage of dedicated CAD tools
 - ... to have a first-time right design cycle!



THANK YOU!

QUESTIONS?


References

- ANSI ESDA/JEDEC JS-001, Electrostatic Discharge Sensitivity Testing Human Body Model (HBM) -Component Level
- ANSI ESD S5.3.1, Electrostatic Discharge Sensitivity Testing Charged Device Model (CDM) -Component Level
- 3. Jedec JESD22-C101, Field-induced Charged-Device Model Test Method For Electrostatic-Discharge-Withstand Thresholds Of Microelectronic Components
- 4. ANSI ESD STM5.2, Electrostatic Discharge Sensitivity Testing Machine Model (MM) Component Level
- 5. Jedec JESD22-A115, Electrostatic Discharge (ESD) SENSITIVITY Testing, Machine Model (MM)
- IEC61000-4-2 Electromagnetic Compatibility (EMC) Part 4-2: Testing And Measurement Techniques
 Electrostatic Discharge Immunity Test
- 7. ANSI ESD SP5.6, Human Metal Model (HMM) Component Level
- 8. ESDA Industry Council on ESD Target Levels, White Paper 3: System Level ESD
- 9. ISO 7637-2:2011 Road vehicles Electrical Disturbances from conduction and coupling (Part 2)

Useful links

- ESD Association <u>www.esda.org</u>
- Jedec <u>www.jedec.org</u>
- American National Standards Institute <u>www.ansi.org</u>
- Automotive Electronics Council
 <u>www.aecouncil.com</u>
- NXP

www.nxp.com

SECURE CONNECTIONS FOR A SMARTER WORLD