

ESD & EMC protection of high speed signal lines

more than you expect

Raf Vleugels
Field Application Egineer

Wurth Elektronik Nederland

raf.vleugels@we-online.com +32 (0) 499 58 18 72

de Nederlandse EMC-ESD Vereniging EMC-ESD Event 2019

NH Conference Centre Koningshof Veldhoven

woensdag 20 november

The Würth Elektronik Group

Sales: 848 million € Employees: 8.300

Printed Circuit Boards

Intelligent Power and Control Systems

Passive Components

Power Modules & Optoelectronics

Electromechanical Components

Automotive & eMobility

Wireless Connectivity & Sensors

DD.MM.YYYY | Technical Academy | Public | <TITLE>

Agenda

- A typical high speed system
- I added protecting, now what happened to my signal?
- Measurements results
- Solutions and summary

USB 3.1

- Up to 10GBit/s and 100Watt of power
- Challenges
 - EMI

- 60W evaluation kit
- 100W evaluation kit

USB 3.1

- USB controller
 - Sensitive for High voltage transients
- Typically protected
 - 2kV HBM

 Need protection for surges

USB 2.0 backwards compatible

USB 3.1 high speed data lines

Power stage, up to 100W

USB 3.1

- Transmission path is symmetrical
 - Both Tx and Rx are identical
- Interface can send and receive at the same time.
- Tx and Rx are referenced at the same ground
- Very similar to many other interfaces
- PCB layout very critical

Susceptible for noise

- The interface is susceptible for noise
 - Differential mode noise
 - Common mode noise
- Source can be the controller it self or some outside noise source. This could be coupled
 - Inductive
 - Capacitative
 - External radiated emissions

Susceptible for transients

- The controller needs to be protected form transient like ESD and surges.
 - Varistors or Diodes can be used to for protection

6.2 ESD Ratings

		-		VALUE	UNIT
V _(ESD)		V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
	V _(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Source Texas Instruments datasheet

EMC-ESD Event 2019

ESD Transient

Peak Current (A) IEC 61000-4-2

7.5

15

30

Special

60ns

 $t_R = 0.7 \text{ TO 1ns}$

30ns

WE-TVS selection

- Important selection criteria
 - Nominal voltage
 - Clamping voltage
 - Capacitance

EMC-ESD Event 2019

WE-TVS

Electrical Properties:

	Droportico	Test conditions		Value			Unit
	Properties	lest conditions		min.	typ.	max.	OIIIL
1	Channel Operating Voltage	I/O to GND	V _{Ch}			5	V
	(Reverse) Breakdown Voltage	I _{BR} =1mA; VO to GND	V _{BR}	6		9	٧
	Channel (Reverse) Leackage Current	$V_{VO} = V_{DC}; V_{GND} = 0V$	I _{Ch Leak}			1	μΑ
	Forward Voltage	I _F =15mA; GND to VO	V _F		0.9	1.2	٧
	(Channel) Input Capacitance	V _{GND} =0V V _{VO} =2.5V, f=1MHz, VO to GND	C _{Ch}		0.5	0.65	pF
	Channel to Channel Input Capacitance	V _{GND} =0V V _{VO} =2.5V, f=1MHz, between VO pins	C _{Cross}		0.03	0.08	pF
	Channel ESD Clamping Voltage	IEC 61000-4-2 +8kV (TLP=16A) Contact Mode, I/O to GND	V _{Ch Clamp ESD}		10.5		V

WE-TVS

Insertion Loss SDD21 (I/O to GND):

Measurements

Measurements

Measurements

Example Common mode Choke

High frequency signals

- WE-CNSW
 - 90 Ω CM @ 100MHz
 - **0603**
- WE-CNSW HF
 - 60 Ω CM @ 100MHz
 - **0504**

REDEXPERT®

nttps://we-online.com/re/5cRQplyn

Common Mode Filter – How it works

It is a Bi-directional filter

From device to outside environment

From outside environment to inside device

Intended Signal - Differential mode

Interference Signal (noise) - Common Mode

- "almost" no affect the signal Differential mode
- high attenuation to the interference signal (noise) Common Mode

USB 3.1 – Signal Integrity

Eye diagram with the WE-CNSW filter (left) and the WE-CNSW HF filter (right) at 5 GBit/s

USB 3.1 – Signal Integrity

Eye diagram with the WE-CNSW filter (left) and the WE-CNSW HF filter (right) at 7 GBit/s

Appnote www.we-online.com/ANP007

Summary

- USB 3.1 interface is susceptible for:
 - Noise (common mode and differential mode)
 - Transients
- Goal: Attenuate unwanted signals while maintaining speed and integrity of data transfer
- Built in ESD protection is often not sufficient
- ESD can go up to 30kV
- Important selection criteria for TVS:
 - Nominal voltage
 - Clamping voltage
 - Capacitance
- By using the right components, the useful signal is not influenced

Thank you for your attention! Any questions? Free samples from stock! Visit our booth!

