From Susceptible Static Energy Meters to Electromagnetic Compatible Energy Measurements

de Nederlandse EMC-ESD Vereniging EMC-ESD Event 2023

Hotel van der Valk Vianen

Dinsdag 21 november

Static Energy Meter Errors Caused by Conducted Electromagnetic Interference

20

Frank Leferink^{1,2,} Cees Keyer^{1,3,} Anton Melentjev³

¹University of Twente Enschede, The Netherlands

Nieuws	Hulp & Tips	Forum	Testpanel	Radar Checkt!

Home
Nieuws
'Slimme meter is onbetrouwbaar'

'Slimme meter is onbetrouwbaar'

Nieuws • 03-03-2017

Finances personnelles > Informations > Actualités

Certains compteurs intelligents surestimeraient la consommation en électricité

Le Figaro le 12/03/2017 à 14:49

UMSTRITTENE STUDIE

3

Warum manche Stromzähler extrem falsch messen

Verification at VSL

Measurements:

- Signal shape, FFT
- Energy of all meters

Traceable to international reference standards findings

 \Rightarrow Confirmation of UT

Household equipment

- 2015-2018: LED and CFL lamps and heater with dimmers
- 2018-2019: laptop, PC + monitor, smart-TV, refrigerator + freezer, microwave, USB chargers, DVD players, induction cookers, blenders, vacuum cleaners, drilling machines, patio heaters, coffee machines, water pump
- Most important parameters:
 I_{max} and *dl/dt*

National Metrology Institute

The main problem: dimming

National Metrology Institute VSL 2

2

0

-2

25.0

Crutent (A) 2.25 Current (A) 0.0

-25.0

25.0

Current (A) 2.21 Current (A) 2.21

-12.5

-25.0

Current (A)

Verification studies

- Accuracy and reliability of the measurements
- Individual household appliances vs. real-world waveforms

National

Institute

Metrology

MeterEMI project

- 3-year research project, completed 2021
- EU funds through EMPIR EMPIR
- 7 partners:

- 5 National Metrology Institutes (NPL, VSL, CMI, METAS, JV)
- 2 Universities (Utwente and UPC)
- Chief Stakeholder: Netbeheer Nederland
- > 25 supporting stakeholders

Test results: appliances vs on-site signals

		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16
	Sensor	S	СТ	U	U	н	СТ	R	СТ	S	U	СТ	U	Н	R	R	S
	Year	2019	2017	2009	2018	2008	2017	2008	2017	2017	2017	2017	2010	2015	2013	2019	2017
Signal	P [W]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]	ε [%]
RO	793	0	0,1	0,0	-2,8	-0,2	0,0	0,1	0,0	0,0	0,0	-0,1	-0,1	-0,1	0,1	-0,3	0,0
R50	430	0,1	0,1	0,9	-2,9	-0,3	0,0	-4,6	0,1	0,0	-0,1	-0,1	-1,3	0,3	-0,9	-1,3	0,0
R75	242	0,2	0,3	-0,6	-3,1	-0,6	0,0	191,4	0,2	1,4	-0,1	-0,1	26,8	-1,2	106,6	-2,7	0,3
CL50	329	1,3	1,0	-27,0	-1,4	-0,2	0,3	-70,9	1,3	1,9	6,0	0,5	-6,4	-16,8	-76,7	3,1	-37,5
CL75	293	1,9	1,7	-39,5	-0,8	-1,4	0,5	117,0	1,7	2,9	7,3	0,7	123,8	173,1	101,8	3,1	-45,3
RCL0	1367	0,1	0,1	0,0	-2,8	-0,1	0,0	0,3	0,0	0,0	0,0	-0,1	-0,1	0,2	0,2	-0,1	-0,1
WP1	19	1,9	3,9	-38,1	-2,0	-7,2	2,2	2711,8	4,5	1,6	5,8	0,1	1119,0	4,2	2648,6	-3,1	-1,9
WP4	34	1,0	2,2	-52,1	-2,3	-3,5	1,3	1368,7	2,6	0,9	3,3	0,0	543,4	3,1	1258,2	-1,6	1,1
WP9	68	0,4	0,6	-56,2	-2,5	-1,7	0,2	200,2	0,6	0,4	1,1	-0,1	31,2	1,9	136,3	-0,5	2,3
WP10	67	0,2	-0,3	-0,3	-2,8	-1,7	-0,4	-1,7	-0,4	0,0	-0,2	-0,2	-0,6	0,4	-0,7	-0,5	0,1
		A 1	4.2	4.2		A E	16	47	A 0	40	A10	A 1 1	410	412	A 1 4	A 1 E	A16
	Concor	AI C	AZ	A5	A4	AS	AU	A7 D	A0 CT	AJ	AIU	AII CT	AIZ	AIS	A14 D	AID	A10
	Voor	2010	2017	2000	2019	2008	2017	2008	2017	3 2017	2017	2017	2010	2015	n 2012	2010	3 2017
Signal		2019 c [%]	2017 c [%]	2003	2010 c [%]	2000	2017	2000 c [%]	2017 c [%]	2017	2017 c [%]	2017 c [%]	2010 c [%]	2015 c [%]	2015	2013	2017 c [%]
JIDC2 1	10/10	ε[/0] 01	ε[/0] 0.1	ε[/0]	2 [/0]	ε[/0] -0.1	2[/0]	د[//] م	ε[/0] 01	2[/0]	2[/0]	ε[/0] -0.1	ε[/0] -0.1	2[/0]		ε[/0] -0.4	ε[/0]
UPC2.1	-121	0,1	-0.1	0,0	2,0	-0,1 TO	0,0	0,2 TO	0,1	0,0	0,0	0.1	-0,1	-0.5	3.1	-0,4	0.0
10002.2	69/	0,0	0.0	0,2	-2,5	-0.2	0,0	0.1	0,0	0,0	0,0	-0.1	-0,4	0,3	0.1	0,0	0,0
UT1 1	719	0,1	0,0	0,0	-2,0	-0,2	0,0	0,1 0,1	0,0	0,0	0,0	-0,1	0.0	-0.1	10.1	-0.3	-0.1
UT1 2	237	0.2	0.8	-0.3	-2,0	-0.6	0,0	-2.1	1.0	0,0	-0.1	-0.1	0,0	0.4	-0.9	-0.9	-0.2
UT1 2a	180	0,2	-3.0	-0.4	-2,5	-0.6	-3.6	-58.2	-3.9	0,0	0.0	-0.1	5.2	1.9	-59.0	1 1	-3.9
UT1 2h	179	0	3.0	-0.3	-2,0	-0.8	3,0	25.5	3.6	-0.1	-0.3	-0.1	-0.9	-0.3	28.6	-2.1	-6.7
VSI 1	2222	0.1	1.3	0.8	-3,0	-0.1	1 1	0.7	1.3	0.0	0.1	-0.1	2.2	0,5	0.3	-0.8	0.0
VSI2	31	0.3	-0.5	-1.5	-2.4	-3.4	-0.3	640.2	-0.5	-0.2	-0.4	-0.3	5.0	-0.1	333.7	1.7	-4.5
VSI3	69	0.3	0.1	0.3	-2.6	-1.6	0.0	-5.1	0.1	0.0	0.0	-0.1	0.1	1.3	-0.9	0.9	-0.1
VSI4	32	0,1	-0.1	TO	-2.8	-3.4	-0.2	818.0	-0.2	-0.5	-0.5	-0.4	-30.3	2.8	796.5	0.2	-0.7
VSI 5	1392	0.1	0.2	0.4	-2.8	-0.1	0.0	31.4	0.1	0.0	0.1	-0.1	17	0.1	28.7	-0.4	-0.1
VOLO	1332	0,1	0,2	0,4	-2,0	-0,1	0,0	31,4	0,1	0,0	0,1	-0,1	1,7	0,1	20,7	-0,4	-0,1

National Metrology Institute

EMC-ESD Event 2023

/Sl

Static Energy Meter Errors

Measurement Setup

- 140-TMX AC Power Supply
- Ideal grid at 50 Hz, 230 V RMS
- Mains supply of the building
- > 24 static energy meters
 - representing the installed base of static energy meters throughout the Netherlands
- The internal consumption of the static energy meters has been compensated
- Reference: Yokogawa WT500
- Voltage and Current waveforms

Waterpump

Waterpump

- Lower waterpump capacity
 - Bigger error
- Faster rising edge
- Closer to the zero crossing

B. Have, T. Hartman, N. Moonen, C. Keyer, and F. Leferink, "Faulty Readings of Static Energy Meters Caused by Conducted Electromagnetic Interference from a Water Pump," Submitted to Renewable Energy and Power Quality Journal (RE&PQJ), 2019.

Event

Waveforms

- Parameters
 - Current slope (di/dt)
 - Phase firing angle
 - Rise time
 - Fall time
 - Crest factor
 - Power factor
 - Peak current
 - Total harmonic distortion
 - Energy (pulse width)

14

EMC

Event

UNIVERSITY OF TWENTE.

How to Earn Money With an EMI Problem

- Monitor their energy consumption
- Inconsistent energy consumption
 - After installing a remote-control on and off switch

Consumption Tuesday 03-11-2020

How to Earn Money With an EMI Problem

- A constant consumption of around 250 W
- After connecting the COTS switch
- Energy consumption dropped significantly
 - Reaching negative values!
- No power generating equipment

How to Earn Money With an EMI Problem

- Remote-control on and off switch
 - Including dimming functionalities
- Household equipment
 - Switched mode power supply
- The switch always initiates a dimming function
 - Phase shift (FA 45°)

Results - Household Equipment

Fast rising edges

#	WT500 (W)	SM1 (W)	SM2 (W)	SM3 (W)	SM4 (W)
1	21 W	-297 W	-286 W	-350 W	-56 W

UNIVERSITY OF TWENTE. EMC-ESD Event 2023

Waveforms

- Parameters
 - Current slope (di/dt)
 - Phase firing angle
 - Rise time
 - Fall time
 - Crest factor
 - Power factor
 - Peak current
 - Total harmonic distortion
 - Energy (pulse width)

Controlled-Current Load

- Controlled-current load has been designed and built
 - Quantifiably determine the relation between waveform parameters and meter errors

Rising Edge Versus Falling Edge

	Reference	$\Delta SM2$
S 1	35 W	-63 W
	37 W	-143 W
S 3	33 W	+58 W
54	32 W	54 W

	Edge	Phase FA	ΔError
S1	Fast Rising [↑]	Below 90°	- Error [W]
S2	Fast Falling [↓]	Below 90°	+ Error [W]
S3	Fast Rising [↑]	Above 90°	+ Error [W]
S4	Fast Falling [↓]	Above 90°	- Error [W]

	t_r	t_{f}	Peak	Rising SR	Falling SR	FA
S1	10 µs	500 µs	5 A	0.5 A/µs	-0.01 A/µs	45 °
<u>\$2</u>	500 µs	10 µs	5 A	0.01 A/µs	-0.5 A/µs	45 °
S 3	10 µs	500 µs	5 A	0.5 A/µs	-0.01 A/µs	135 °
S4	500 µs	10 µs	5 A	0.01 A/µs	-0.5 A/µs	135 °

Current Measurement Chain

0

0.000

Figure 5.2. Block diagram of the current measurement chain inside the STPM01 chip that is used in SMs $\,$

Current channels							
Gain	Max input voltage (V)						
8X	±0.15						
16X	±0.075						
24X	±0.05						
32X	±0.035						

STMicroelectronics, "Programmable single phase energy metering IC with tamper detection," STPM01 datasheet, Jun. 2011, Doc ID 10853 Rev 8.

25

0.01D

0.02

Time (s)

U.U I

Time (s)

Simplified Pulse

(a) Pulse with a fast rising edge

Clipped

Distorted current waveform after integration

Fig. 4. Schematic overview of the clipping of the differentiated current

21 W

22 W

-297 W

35 W

SM1 (W)
-297 W
35 W
485 W

	Edge	Phase FA	∆ Error
S1	Fast Rising [↑]	Below 90°	- Error [W]
S2	Fast Falling [↓]	Below 90°	+ Error [W]
S3	Fast Rising [↑]	Above 90°	+ Error [W]
S4	Fast Falling [↓]	Above 90°	- Error [W]

(c) Clipped amplifier output

di/dt

Current

(d) Distorted current after integration

Time

(b) Differentiated Rogowski coil output

Fig. 4. Schematic overview of the clipping of the differentiated current

Voltage

Voltage

Intentional EMI

				400			Volt	10 tage	1
	Edge	Phase FA	∆ Error	€ ²⁰⁰			Curi	rent 5	(Y
S1	Fast Rising [↑]	Below 90°	- Error [W]	0 tage	Q1 Q2	Q	3 Q4	0	rrent
S4	Fast Falling [↓]	Above 90°	- Error [W]	[−] / ₂₀₀				-5	Cul
				-400				 	0
How to	protect?			0	0.005	0.01 Time (s)	0.015	0.02	

- Why could this happen in the first place?
 - We have standards, right?
 - CE + CE \neq CE

Table 5.4: Worst case waveform characteristics

Quarter	t_r	t_f	Peak	Rising SR	Falling SR
1st & 3rd	$8\mu s$	$80\mu s$	8 A	$1 \mathrm{A}/\mathrm{\mu s}$	$-0.1\mathrm{A}/\mathrm{\mu s}$
2nd & 4th	$80\mu s$	$8\mu s$	8 A	$0.1\mathrm{A}/\mathrm{\mu s}$	$-1 \mathrm{A}/\mathrm{\mu s}$

Table 5.5: Worst case waveform errors

SM1	SM2	SM3	Reference	$\Delta SM2$	$\Delta SM3$
$95\mathrm{W}$	$-989\mathrm{W}$	$-1036\mathrm{W}$	$95.9\mathrm{W}$	$-1085\mathrm{W}$	-1132 W

UNIVERSITY OF TWENTE.

EMC

Event

Proposal to CENELEC TC13 WG01

Whose liability?

- Static meter manufacturers?
 - → Standardization (IEC TC13 WG11, CLC TC13 WG01, …)
- Household electronics manufacturers?
 - → CE mark
- Customers?
 - \rightarrow Common sense
- Utilities, metering companies?
 - → "It is *their* energy bill"
- Government?
 - → Regulations (OIML, Welmec)
- What about the potential effects on other equipment?
 - \rightarrow Do present emission and immunity tests cover these waveforms?

Present status and future

- In-situ cases were found with COTS equipment
- The root-cause for Rogowski coil meter errors was found
 Phase and di/dt
- Investigated and tested > 70 meters
- Impact study in the Netherlands based on statistics
- Dutch rules for new meters
 Meters should operate correctly for all test waveforms
- Cenelec TC 13 WG 01 task force MeterEMI
 Selection of proper test waveforms in addendum of EN 50470
- Influence of voltage distortion?

SKRA Herei 20 ⁻¹⁰ grant	182 000000	
SAMUL SMOULE OLY Poperty of Sectors		

Contact details

UNIVERSITY OF TWENTE.

Tom Hartman tom.hartman@utwente.nl

Helko van den Brom hvdbrom@vsl.nl

Extra

Figure 5.2. Block diagram of the current measurement chain inside the STPM01 chip that is used in SMs [98]

