# HTCO GmbH

Strömungsphysik - Strömungssimulation

# Sunburned Products: Numerical Aging caused by Sun Exposition

Dr. Axel Müller & Teodora Vatahska HTCO GmbH Freiburg, Germany

**CEEES Conference 2012** 

October 18<sup>th</sup> 2012 Rotterdam, Netherlands

EES SEMINAR

## HTCO: Expertise Application Fields



HTCO - CEEES-Conference, October 18, 2012, Rotterdam

EUROPEAN CEEES SEMINAR COMPANY ELABORITORIA DE DEVINIONALITATION DE COMPANY DE COMP

# **Sunburned Products**

#### A new Simulation Approach

#### What is a sunburned product?

It is a product which is exposed to the sun and shows change of its material properties (aging), e.g.

- colour
- gloss
- cracks

over time.

#### What is numerical aging?

A way to predict material aging caused by environmental impacts, e.g.

- temperature
- solar radiation
- humidity

by numerical simulation on the basis of geographical, geometrical, environmental, material data, and time.

\* Source: Fraunhofer Institute for Solar Research (ISE), Freiburg, Germany





## How important is Aging to Industry? Motivation

#### Temperature distribution in a car standing in the sun



PLATFORN OMGEVING

**IGSTECHNOLOGIE** 

EUROPEAN CEEES SEMINAR

\* Source: ATCAE Conference Oxford, England, 2008, Dr. Stahl, Audi AG

# How important is Aging to Industry?

#### **Motivation**



# It is very important!

#### Costly experimental outdoor weathering tests

Instrument panel in an IP/DP-box



\*Source: ATCAE Conference Oxford, England, 2008 Dr. Stahl, Audi AG

# **Research Project VipQuali**

#### **Experimental Part**





The research specimen is a polypropylen hat (black and white). Its surface teperature is being measured by temperature sensor.

Outdoor weathering tests in IP/DPbox in Phoenix, Arizona

#### VipQuali Consortium











Bundesministerium für Bildung und Forschung





#### What is needed to simulate Aging ?

- 1) Temperature Distribution on the Specimen and in the Box
- 2) Radiation of the Sun and the Environment
- 3) Positions of the Sun
- 4) Dose-Effect-Relationship (change of the material as a function of Irradiation, Temperature, etc. and Time)
- 5) Method to visualise the change of the material



## **Methodology and Tools**

The numerical Aging Approach

#### Aging simulation workflow and modules



PLATFORM OMGEVINGSTECHNOLOGIE

EUROPEAN CEEES SEMINAR

#### **Solution approach**

Similarly to computational fluid dynamics the complex and continuous aging process can only be numerically treated and solved by means of intelligent discretization methods

## **Climate Modeling**

#### **Data Acquisition and Preparation**

#### **Climate data acquisition**

- Ambient temperature
- Solar radiation (direct, diffuse, environmental) on horizontal surfaces
- Wind
- ...

#### **Data preparation tool**

Measurements have to be translated into boundary conditions required for the simulation

- Radiation on inclined external surfaces
- Calculation of sun position for specific location and time
- • •

#### Temperature data measured in Arizona







# Buildup of the Models for the Simulation (CFD)







CAD- Model



Finite-Volume-Mesh

Ž,× X→×



## **CFD** Simulation

#### **Boundary Conditions**

#### **Materials**

- Window glass
- Hat black (white) polypropylen
- Box silver aluminium

#### **Material properties**

- Emission- and transmission coefficients
- Heat conductivities
- Viscosity

# ····

#### Solar load

- Direct and diffuse radiation
- Azimuth and altitude angle of the sun

#### **Boundary conditions on external walls**

- Effective radiation temperature
- Environmental temperature
- Heat tranfer coefficient

#### **Boundary conditions on internal walls**

None (calculated by solar load)



# **CFD** Simulation **First Results**

#### **Temperature Distribution for the Hat and the Box**



EUROPEAN CEEES SEMINAR

**INGSTECHNOLOGIE** 



#### Solar Irradiation and Temperature Distribution for one Sun Position









#### Absorbed Radiation and Temperature Distribution for one day



June 2008, 24, Arizona





#### **Sun Positions**



Azimuth of the Sun



HTCO - CEEES-Conference, October 18, 2012, Rotterdam

CORRECTIONS EUROPEAN CEEES SEMINAR FILING CONSCIENCES OF CONSCIENC

# **Discretization Approach**

#### Sun Positions

#### Challenge

Aging under sun exposition is a continuous (transient) process since

- the sun continuously changes its position during the day and the year
- the boundary conditions for the simulation continuously change

#### How to handle this?

- Reduction to a finite number of relevant situations and performing stationary simulations for each one of them
- Combination of similar situations (sun positions) in clusters
- Representation of each cluster by one characteristic sun position and its frequency and the corresponding ambient temperature

ES SEMINAR



## **Discretization Approach**

#### **Characteristic Sun Positions**

#### Sun positions occuring in Arizona and cluster representatives



EUROPEAN CEEES SEMINAR

PLATFORM OMGEVINGSTECHNOLOGIE



#### Calculation for every finite element of the surface

Absorbed Radiation [E] of one surface element

Resulting Temperature [T] on this surface element

| 14  | 10  |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 35  | 5   | 9   |     |     |     |     |     |
| 56  | 72  | 94  | 18  | 37  |     |     |     |
| 77  | 138 | 179 | 97  | 24  | 68  |     |     |
| 97  | 205 | 264 | 177 | 112 | 122 | 155 |     |
| 118 | 272 | 348 | 256 | 200 | 175 | 172 | 172 |
| 139 | 338 | 433 | 336 | 289 | 229 | 208 | 172 |
|     | 405 | 518 | 416 | 294 | 282 | 244 | 172 |
|     |     | 603 | 495 | 299 | 335 | 281 | 172 |
|     |     | 603 | 575 | 305 | 389 | 317 | 172 |
|     |     | 603 | 654 | 310 | 390 | 353 | 172 |
|     |     |     | 734 | 316 | 391 | 389 | 172 |
|     |     |     | 734 | 321 | 392 | 389 | 172 |
|     |     | 557 | 655 | 326 | 393 | 351 | 171 |
|     |     | 557 | 576 | 332 | 394 | 314 | 169 |
|     |     | 557 | 497 | 337 | 348 | 276 | 168 |
|     | 277 | 479 | 418 | 342 | 301 | 239 | 166 |
| 0   | 232 | 402 | 339 | 348 | 255 | 201 | 165 |
| 4   | 188 | 325 | 259 | 255 | 208 | 164 | 164 |
| 7   | 143 | 247 | 180 | 162 | 162 | 163 |     |
| 11  | 98  | 170 | 101 | 70  | 115 |     |     |
| 14  | 54  | 93  | 22  | 69  |     |     |     |
| 18  | 9   | 15  |     |     |     |     |     |
| 21  | 15  |     |     |     |     |     |     |

Temperature and solar Radiation for the Clusterrepresentatives were directly simulated

67 

*Temperature and solar Radiation for all other positions were interpolated* 



# Aging Simulation Dose-Effect-Relationship

#### **Probability of crack formation\***

This dose-effect-relationship (w) describes the material change as a function of irradiance (E) and temperature (T) over the time.



#### **Aging algorithm**

Calculation of w(t) for all specimen surfaces by summation over all occuring sun positions and their frequencies

\* Source: German Federal Institute for Materials Research and Testing BAM, Berlin, Germany, Dr. Anja Geburtig)



# Aging Simulation Results

#### **Monthly Contributions to the Crack Probability**

Summation of the contributions to the Dose-Effect-Relationship with their monthly appearing frequency







#### **Crack Probability of the black hat in time**







#### Crack Probability of the white (large) and black (small) hat in time





## **Research Project VipQuali**

#### Experiment vs. Simulation

#### Material damage of the specimen after 2,5 years exposition in the sun



#### Material damage stripes



Experimental results

Simulation results: crack probability





## **Research Project VipQuali**

#### Experiment vs. Simulation

#### Material damage of the specimen after 2,5 years exposition in the sun



Experimental results

Simulation results: crack probability



## **Industrial Application**

**Aging Simulation in a Car Cabin** 

#### Methodology transfer to a real problem



Geometrical model

Finite volume mesh





#### Irradiation and temperature distribution for a given sun position



10:10 a.m., 24th of June, Arizona





#### Irradiation distribution for one day







#### **Temperature distribution for one day**





# Aging Simulation Results

#### **Probability of crack formation over two years**





# The Numerical Aging Tool

#### Modules

#### **Climate Module**

- Calculation of all occurring sun positions (azimuth and altitude) at an arbitrary geographical location
- Calculation of direct and diffuse solar radiation for an arbitrary geographical location, sun position and wall orientation
- Calculation of effective radiation temperature on the external walls of an arbitrary specimen
- Discretization of sun positions into characteristic clusters and interpolation of simulation results for all occurring sun positions

#### **CFD Modul**

FLUENT, STAR CCM+

#### **Aging Modul**

- Calculation of the dose-effect-function by means of summation over all occurring sun positions and their frequencies
- Visualization tool





#### Application of the methodology for every product exposed in the sun

- Temperature, radiation and velocity distribution can be calculated for an arbitrary product at any geographical location and climate
- Accumulation of the effects of these physical quantities over time

#### **Perspectives**

- Correct aging simulation of other materials requires additional experimental research in order to find a real dose-effect-relationship for these materials
- Future cooperation with companies interested in industrial and scientific projects on this topic



# cogito ergo sim

think and simulate