Environmental simulation tests

Environmental simulation equipment for e-mobility

Environmental factors

Objective of environmental simulation tests

Range of technologies for e-mobility

Environmental simulation equipment for e-mobility to test:

- Power Control
- Cables and connectors
- Li-ion Batteries
- Electric Drive
- Fuel-Cell

Environmental simulation tests

Environmental factors

Objective of environmental simulation tests

- Systematic investigation of the interaction between the specimen and the enviroment
- Statements about the lifetime

Range of new technologies for electric vehicles

Agenda

Environmental factors

Objectives of environmental simulation tests

Range of technologies for e-mobility

Environmental simulation equipment for e-mobility to test

- Power Control
- Cables and connectors
- Li-ion Batteries
- Electric Drive
- Fuel-Cell

ISO 12405-2

Table A1: Assignment of tests to battery pack and system

- *1 BCU not included, external BCU not operating, cooling not operating, main contacters controlled manually
- X relevant test
- test not relevant
- U adapted / reduced procedure
- V functional test including active BCU
- W fuse test

Test under the influence of temperature

ROTTERDAM

EUROPEAN RELIABILITY AND ENVIRONMENTAL TESTIN

EUCAR Hazard Levels European Council for Automotive R&D

Hazard Level	Description	Classification Criteria & Effect
0	No effect	No effect. No loss of functionality.
1	Passive protection activated	No defect; no leakage; no venting, fire or flame; no rupture; no explo- sion; no exothermic reaction or thermal runaway. Cell reversibly dam- aged. Repair of protection device needed.
2	Defect / Damage	No leakage; no venting, fire or flame; no rupture; no explosion; no exo- thermic reaction or thermal runaway. Cell irreversibly damaged. Repair needed.
3	Leakage ∆ mass < 50%	No venting, fire or flame*; no rupture; no explosion. Weight loss <50% of electrolyte weight (electrolyte = solvent + salt).
4	Venting ∆ mass ≥ 50%	No fire or flame*; no rupture; no explosion. Weight loss ≥50% of electro- lyte weight (electrolyte = solvent + salt).
5	Fire or Flame	No rupture; no explosion (i.e., no flying parts).
6	Rupture	No explosion, but flying parts of the active mass.
7	Explosion	Explosion (i.e., disintegration of the cell).

Purpose of the test

Is the Personal safety secured.

Evidence that shows that the safety devices are sufficient

Building protection and Property protection

Evaluation of an attack on adjacent test benches or the building

Questions and thoughts before the test?

- Inside the test cabinet
 - How many cells are simultaneously activated by the short circuit to the thermal runaway?
 - Is the pressure compensation for resultant gas quantities large enough?
 - · What temperatures / pressures can we expect?
 - Is there a chance of an explosive reaction in the beginning?
 - Where is the released energy going to?
- Outside the test cabinet
 - What quantities of gas are released out of the chamber?
 - Will there be a fire outside the chamber?
 - What is the risk that the bottom of the chamber will melt and collapse?

Experimental house for fire

Smoke Evacuation

Brick Wall

Temperature testcabinet module

Front view

Test severity: Worst Case

- 2 pieces EV Lithium-Batteries 29 kWh Total output
- without cover, 100 % SOC
- All security organs of the battery are overriden
- Temperature in the test cabinet module + 65°C/ 150°F

Triggering the accident

Condition after the test

State of the test cabinet 2 days after the test

Results

- Starting with violent reaction and a release of large quantities of gas
- As a follower action, more cells will be activated sequentially
 - Domino effect-
- It comes to a smoldering
- Air temperature in the test cabinet module rises up +600°C / 1100°F
- The temperature test cabinet module is resistant to the stress
- Only gases penetrate to the outside -no fire-
- Test Personal are safe
- There will be no attack on adjacent facilities / buildings

Finding

Basic security measures for a test chamber

- Correct dimensioned pressure compensation
- Secure door lock system

Additional devices to further reduce risk

- N2 inerting
- Gas measurement warning
- CO2 and inerting and cooling

Comment

- Derivation of the corrosive and toxic gases is the central task in the building
- Results can only be considered as indicative values to other constellations
- Battery chemistry and design have strong influence on the accident
- It is possible to clean the test room?
- Test cabinet modules have been disposed of as hazardous waste

Li-ion safety equipment (options)

Temperature chamber

- For testing cells and modules
- Per test room 210 liter
- Temperature range: -40°C ... +180°C
- Rate of change: ca. 3 K/min
- Heat compansation: 1000 W
- safety equipments:
 - Electrical and mechanical door lock
 - Pressure release flap
 - N2 Inertisation
 - Pressure monitoring of the chamber

Climatic chamber

- For testing modules and packs
- Test room 180 ... 1500 liter
- Temperature range: -70/-40°C ... +180°C
- Rate pf change: 2 ... 15 K/min
- Heat compensation: 1 KW 8 KW
- Safety equipments:
 - Electrical and mechanical door lock
 - Pressure release flap
 - CO measurement / CO2 flooding

Climatic chamber

- For testing large batteries
- Test room 6000 liter
- Temperature range: -70/-40°C ... +120°C
- Rate of change: ca 2 K/min
- Heat compensation: 5 KW
- Safety equipments:
 - Electrical and mechanical door lock
 - Pressure release flap
 - CO measurement / CO2 flooding

Walk-in chamber

- For testing large batteries
- Test room 8000 liter
- Temperature range: -50 ... +95°C
- Climatic range: 10%r.h. ... +90%r.h.
- Rate of change: 2 K/min
- Heat compensation: 10 KW
- Safety equipments:
 - Electrical and mechanical door lock
 - Pressure release flap (Hot gas up to 8001/s)
 - N2 permanent Inertisation
 - O2 Measuring

Drive in chamber

- For testing EV (electric Vehicle)
- Test room: 53m³ (4,0x6,0x2,2m)
- Temperature range: -60 ... +150°C (90°C)
- Climatic range: 10%r.h. ... +90%r.h.
- Rate of change: 1 K/min
- Heat compensation: 35 KW
- Safety equipments:
 - Electrical and mechanical door lock
 - Fresh air purge unit / Pressure release flap
 - N2 permanent Inertisation / O2 Measuring
 - H2 and CO Measuring

Vibration chamber

- For vibration and temp. combination tests
- Test room 2200 liter
- Temperature range: -70 ... +180°C
- Rate of change: 22 K/min
- Heat compensation: 8 KW
- Safety equipments:
 - Electrical and mechanical door lock
 - Pressure release flap 200mm
 - N2 permanent Inertisation
 - CO Measuring and preperation for CO2 cooling

Environmenat simulation equipment for e-mobility

