Lightfastness and Weathering Durability Testing Techniques

CEEES Seminar

'European Reliability and Environmental Testing Connected'

October 18, 2012; RDM Campus, Rotterdam – NL

ing. Mark de Waard - Rycobel

INDEX

- Rycobel Group
- What is Weathering and Lightfastness
- Weathering Factors
- Natural Weathering
- Laboratory Weathering
 - Major Parameters for Weathering Tests
 - What light is Right
 - Temperature
 - Correlation and Acceleration
- Today's Laboratory

Rycobel Group

- Rycobel is an exclusive distributor of <u>testing equipment</u> for quality control and is specialized in <u>the optimization</u> of production processes on the shop floor across all industries.
- All over Europe
- ISO 9001-2008

HISTORY

- 1950 : Roots in Textile
- 1960 : Exceeding sector limitations static electricity
- 1970 : Testing equipment and equipment for quality control Export
- 1980- 1990 : Product range and market grow further (textile, plastics, packaging, ...)
- 2000-2010 : Extend business unit : optimization of production processes.
- 2006 : Establishment Equintech SARL (France)
- 2008 : ISO 9001:2008 Certificate
- 2010 : Take over activities of Atlas BV Netherlands and establishment Rycobel BV Netherlands

WEATHERING vs LIGHTFASTNESS

Weathering

Weathering is the adverse irreversible response of a material or product due to climate = Ageing

Lightfastness

= Fading

WEATHERING FACTORS

NATURAL WEATHERING

= Realistic but time-consuming

LABORATORY WEATHERING

Desirable Characteristics:

- Exact match to outdoor conditions
- Does not alter degradation mechanisms; i.e. "correlates" with outdoor exposures
- Repeatable and reproducible
- Independent control over stress factors
- Provides "acceleration" over real time
- Service life prediction

LABORATORY WEATHERING

MAJOR PARAMETERS FOR WEATHERING TESTS

- Spectral distribution and irradiance
- Surface temperature
- Test chamber temperature
- Relative humidity
- Cycles (rain phase light / dark phase)
- Monitoring and control of all parameters
- Calibration of the measuring instruments

<u>Standard = agreement between client and supplier</u>

LABORATORY WEATHERING WHAT LIGHT IS RIGHT

Spectral Range		Wavelength [nm]	Irradiance [W/m ²]*		[%] of Total Solar*
UltraViolet (UV)	UV-B	~280-320nm	4,06 W/m²	74 E6 W/m ²	6,8%
	UV-A	~320-400nm	70,5 W/m²	74,50 00/11	
Visible		~400-800nm		604,22 W/m²	55,4%
Infrared (IR)		~800-2450nm	411,62 W/m²		37,8%
Total		~280-2450nm	1 2	1090,40 W/m ²	100,0%

*in accordance to CIE Pub. 86, Tab4

LABORATORY WEATHERING WHAT LIGHT IS RIGHT

Filter combinations for water-cooled Xenon lamps

Inner filter glass	Outer filter glass	Test conditions
Boro- silicate "S"	Boro- silicate "S"	Most common combination for weathering tests / Outdoor conditions
Quartz	Boro- silicate "S"	Weathering tests with somewhat more and shorter UV than sunlight (presence of UV-C)
Quartz	Quartz	Weathering tests with considerably higher and shorter UV than sunlight – for extreme requirements only -
Borosili- cate "S"	Soda Lime	Most common combiantion for lightfastness tests behind window glass

LABORATORY WEATHERING SURFACE TEMPERATURES

The temperature difference between BST and BPT can be 5°C to 8 °C due to the thermal isolation of the BST

LABORATORY WEATHERING

SURFACE TEMPERATURES

CORRELATION AND ACCELERATION

H (MJ/m²) ¹⁾	Global	UV		Exposure	Time				
Spectral Range (nm)	295-3000	295-400		Time [h] ²⁾	Factor ³⁾				
Central Europe	3.550	215		995	~9				
South of France	5.000	300		1390	~6.3				
Florida	5.850	355		1640	~5.3				
Arizona	8.000	485		2245	~3.9				
¹⁾ Average annual radiant exposure outdoors (mean value over 10 years)									
²⁾ Xenon instrument - 60 W/m² (295-400 nm)									
$^{(3)}$ 1 year ~ 8.760 hours									

Textiles; AATCC, ISO 105, ... Plastics; ISO 4892, ASTM, ... Automotive; SAE, VW, BMW, Peugeot/Citroen, Renault, ...

CORRELATION AND ACCELERATION

PVC as example

Questions?

Thank you for your attention!

info@rycobel.com - www.rycobel.com

