

Solderable Surface Finishes: One of the key Factors impacting the overall Reliability of Electronic Products

The black pad failure mode: false negatives v false positives

innovation

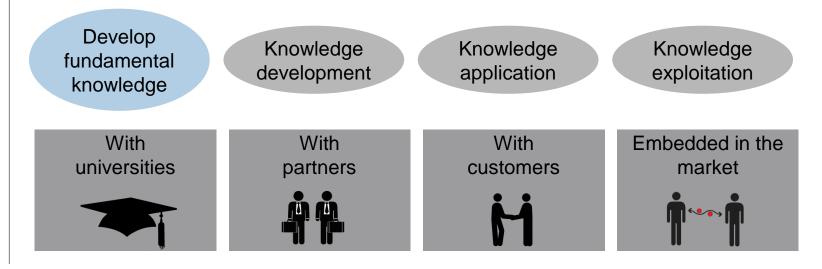
Erik Veninga - TNO Technical Sciences

erik.veninga@tno.nl

Contents

- TNO Technical Science Materials for Integrated Products
- Some soldering Basics
- Solderable Surface Finishes
 - ENIG
 - Black Pad Failure Mode
- Failure Analysis Black Pad suspect Boards

TNO Technical Sciences -Materials for Integrated Products

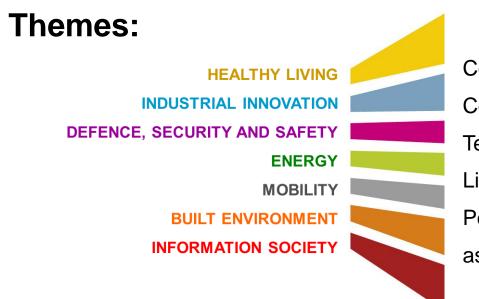


innovation for life

The mission of TNO

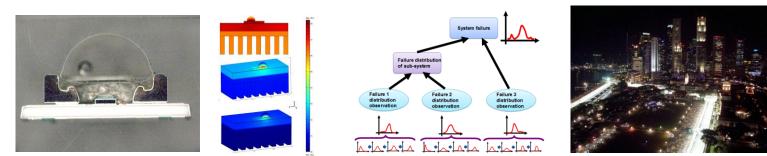
TNO connects people and knowledge to create innovations that boost the sustainable competitiveness of industry and well-being of society.

From idea to innovation:


Areas of Expertise

- Technical Sciences
- Behavioural and Societal Sciences
- Earth, Environmental and Life Sciences

TNO Technical Sciences in Eindhoven.



innovation

Materials for Integrated Products (MIP)

We know how to **assess, control and enhance the performance** of multi-material components in demanding environments

- by combining expertise on materials and their processing,
- with physical experiments and computer-aided modelling and simulation

From materials, interconnects and packaging to system reliability.

erik.veninga@tno.n

6

Some soldering Basics

7

erik.veninga@tno.n

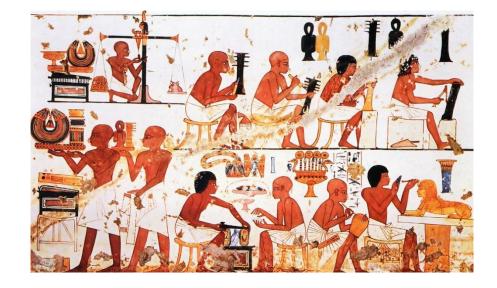
innovation

"Soldering is a simple Operation" [1]

"It consists of the relative positioning of the parts to be joined, of wetting the surfaces with molten solder and allowing the solder to cool down until it has solidified"

Note: solder has a lower melting point than the base materials. The base materials itself will not melt.

[1] Klein Wassink, R.J., "Soldering in Electronics (Second edition)", ISBN 0 901150 24 X, Electrochemical Publications LTD, 1994.



8

History of Soldering: It started with Jewellery

- 6,000 years ago: Humans first worked metals
- 5.000 years ago: Egyptians were "soldering" gold jewellery
- 4.000 years ago: Soldering came of age with the discovery of tin
- 19th century: Industrial revolution greatly expanded the use of solders

For many years soldering was mainly used to make jewellery, cooking ware and tools (weapons)

innovation

innovation

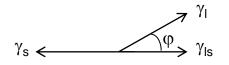
9

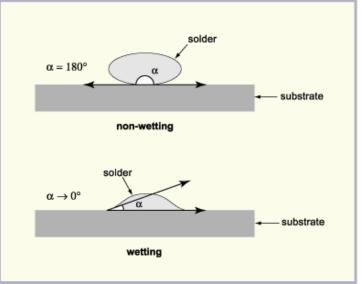
Alloys: Classifications and melting Temperatures

• Tin (Sn) based soldering alloys (eutectic compositions)

450 °C	\uparrow	Brazing "Hard solderen"						
	\downarrow	Soft soldering						
280 °C			AuSn20					
260 °C		1	High temperature range					
227 °C			SnCu0.7					
221 °C			SnAg3.5					
217 °C			SnAg3.8Cu0.7					
199 °C			SnZn9					
183 °C			SnPb37					
		\downarrow	Traditional low temperature range					
139 °C			SnBi58					
117 °C			SnIn52					

erik.veninga@tno.n


Wetting of Surfaces: an essential Parameter


 Wetting: the mechanism by which molten solder adheres to the base metals which it joins

The extent to which liquid solder spread depends on surface tensions acting on the interface:

- γ_{I} , surface tension liquid
- γ_s , surface tension solid
- γ_{ls} , surface tension liquid-solid interface

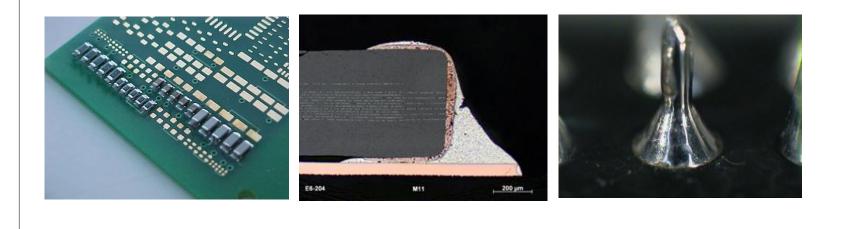
Young's equation: $\gamma_{ls} + \gamma_l \cos \varphi = \gamma_s$

innovation

Low interfacial tensions due to solubility in solid state or forming of intermetallic compounds!

Note: wetting is only one important aspect of solderability!

10



innovation

The Basic Parts of and Electronics Solder Joint

- Electronic components with solderable surfaces
- Solder alloy: often used in combination with a flux
- Printed Circuit Board: Cu base material often provided with a solderable surface finish

12

erik.veninga@tno.n

Solderable Surface Finishes

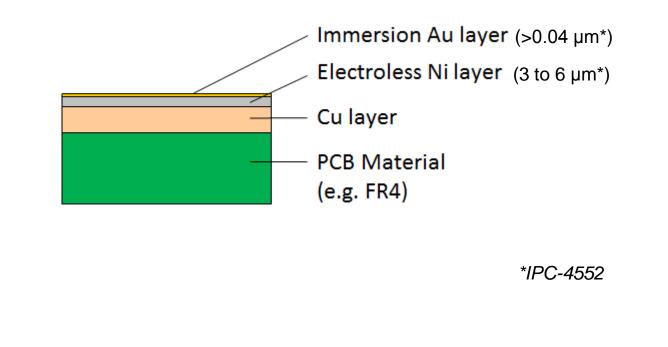
Examples Solderable Surface Finishes

- HASL (Hot Air Solder Level):
- Immersion Ag:
- Immersion Sn:
- OSP (Organic Sold. Preservative):
- ENIG (Electroless Ni, Imm. Au):

 $low-cost \leftrightarrow co-planarity$ $planarity \leftrightarrow tarnishing (Ag_2S)$ $planarity \leftrightarrow Sn whiskers$ $low-cost \leftrightarrow shelf life$

innovation

solderability \leftrightarrow expensive,

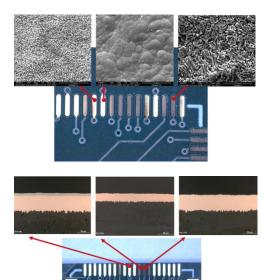

Selection based on: costs, volumes, alloy compatibility, finepitch capabilities, shelf life, operating conditions / reliability requirements,

Electroless Ni, Immersion Au (ENIG)

• The de facto standard choice of PCB solderable finish for high reliability, high value electronics is nickel-gold.

Cleaning Rinsing Rinsing Etching Rinsing Rinsing Acid pre-dipping Pd Catalyst Rinsina Rinsing Electroless Ni Rinsing Rinsing Immersion Au Rinsing Rinsing Drying

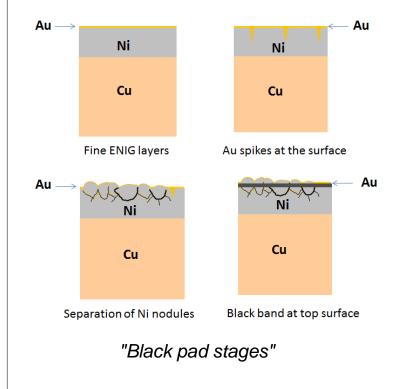
innovation

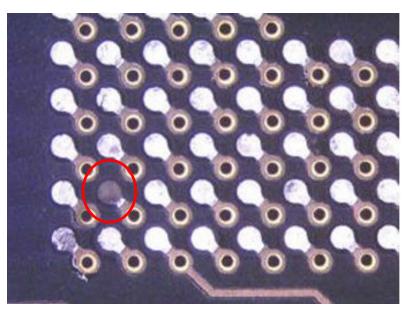


Potential ENIG Failure Modes

	Plating defect	Failure mode	Mechanism	Cause	S [severity]	O [occurrence]	D [detectability]	Ref.
1.0	Ni Oxidation	Discolouration, Ni noses Poor solderability Increased contact resistance	Oxidation	Pores in immersion Au layer				-
2.1	Background plating	Plating on areas not intended to be plated	Metal available at non plating areas	Inproper rinsing				
2.2	Ni foot	Extraneous plating between pads	Metal available at non plating areas	Inproper rinsing				
3.0	Edge pull back	Less / no Ni plating at edge of pads	High concentrations stabilisers acts as catalytic poison	Concentration stabalisers / brightners too high in Ni bath				
				Whirls at pad edges / sharp geometries Low loading				
4.0	Skipped plating	Discoloured pads (grey / black)	Immersion Au plating on Cu	Surface contamination on the copper or a static charge.				
5.0	Black pad	Discolouration Inproper solder wetting Non / de-wetting solder Low solder joint integrity	"Hyper" corrosion Ni-P layer	······				

Skipped plating example:



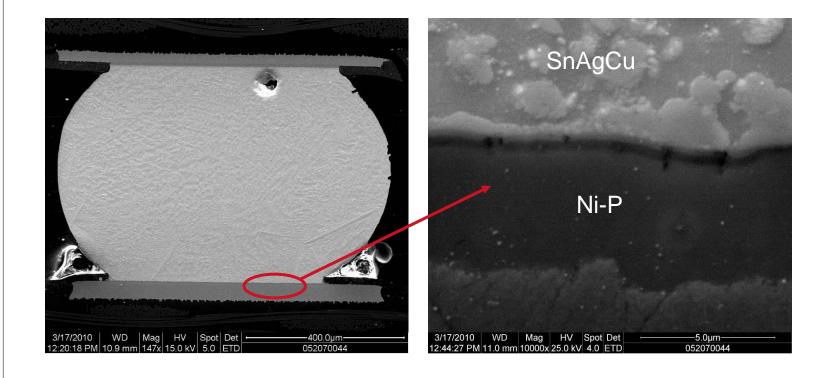


Black Pad: Hyper Corrosion Mechanism

· Local differences in plating rates immersion Au

innovation for life

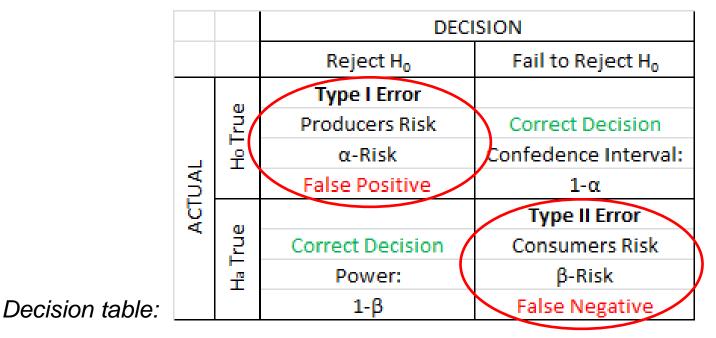
ITRI, "ENIG Failure Mode Notes".



innovation for life

Solder Joint on ENIG Example: Ball Grid Array Ball

• Interface Ni-P and SnAgCu solder ball



innovation for life

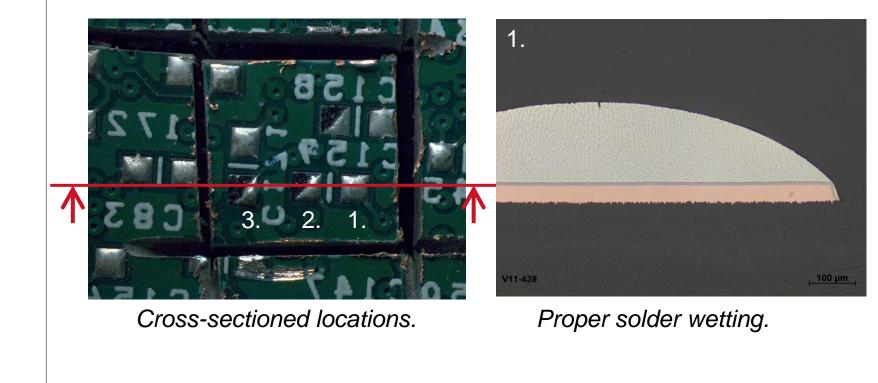
Black Pad Situation nowadays

 Unjustified acceptances are still feared, while in practice most manufactures are dealing with high appraisal costs of unjustified rejects.

19

erik.veninga@tno.n

Failure Analysis Black Pad Suspect Boards



innovation for life

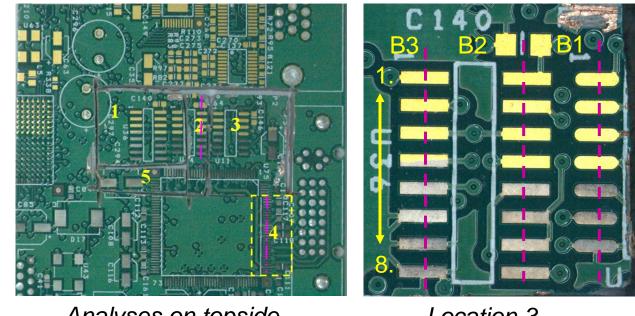
Board with non- / de-wetted areas (I)

• Black coloured non wetted areas

innovation for life

Board with non- / de-wetted areas (II)

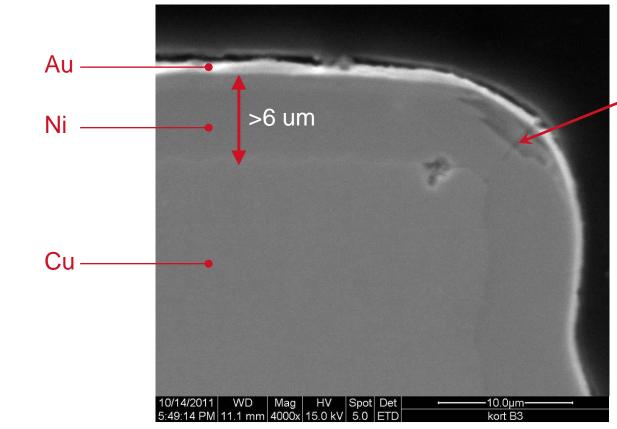
• Black coloured non wetted areas



Black Pad Suspect Board (I)

• ENIG board with stripped Au layer

Analyses on topside


Location 3

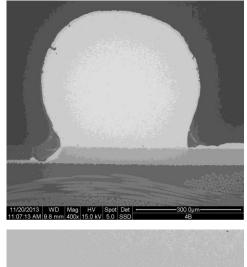
Black Pad Suspect Board (II)

• Cross section of ENIG plated Cu conductor (B3, pad4)

Crack through
Ni layer,
excessive
corrosion
underneath
Au layer

innovation for life



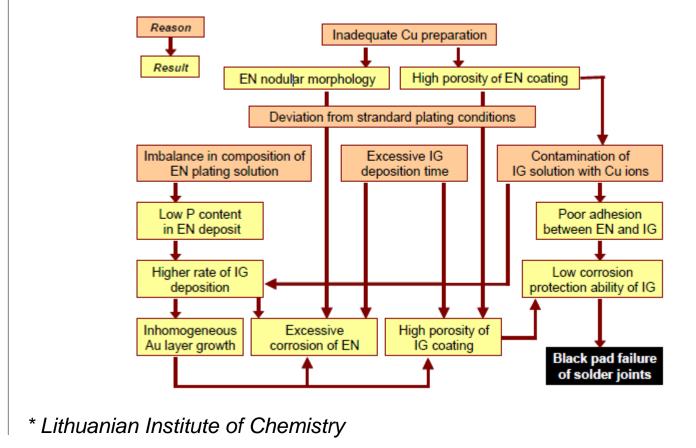


24 July 15, 2013

Attempts to Induce Black Pad

• Reducing Ni Thickness

innovation for life



innovation for life

Summary on the Black Pad occurrence Reasons

• Overview based on failure mechanisms study* within ASPIS project

How to minimise the Black Pad Risk

- Control Cu roughness and surface condition
- Control electroless Ni layer morphology and thickness
- Control immersion Au layer thickness
- Control composition plating solutions
-

Tests running on alternative ENIG Finishes

- Aging test, IMC growth
 - Standard ITRI ENIG plating and XL plating boards
 - Samples @ t=0, 20, 100, 250 and 500 hrs.
- 85 °C / 85 %RH test
 - Standard ITRI ENIG plating and XL plating boards
 - Samples @ t=0, 250, 500, 750 and 1000 hrs.

Thank you for your attention!

Erik Veninga TNO Technical Sciences – Materials for Integrated Products De Rondom 1, P.O. Box 6235 5600 HE Eindhoven Tel: +31 (0)88 86 65509 / Mob: +31 (0)6 - 51531740 E-mail: erik.veninga@tno.nl