

Comparison of MIL-STD810G with real load cases of a VHF radio in a helicopter

Questions

Are the Standards for Vibration
Testing sufficient to guarantee
lifetime operation of a new Console
in a police helicopter?

Can we perform vibration measurements in typical operating conditions to verify?

Is the current design of a new console robust enough to survive 30.000 hours of operation (=lifetime of helicopter)?

Page 2 2015-11-25 Siemens PLM Software

Project

New console for camera operator in a police helicopter

- Experimentel modal analysis
 - Identifying Resonance frequencies
- Operational modal analysis
 - Identifying Resonace frequencies installed in helicopter and during flight
- Mission Synthesis
 - Validate vibration durability of current design

Project Mission Synthesis

Focus on VHF Radios of new console

Unrestricted © Siemens AG 2015

Mission Synthesis: Qualification of products under representative loading conditions

Materials undergo damage or do not completely fulfill their functions during dayto-day use

In the development cycle of a new product, it's necessary to validate that the specimen remains operational in a representative environment during it's intended lifetime

Standards exists for different vibration environments

Actual trend to tailor tests and reduce time and costs (Mission Synthesis)

Classical approaches Qualification testing

Shock and vibration levels

Vibration control system

- Handbooks
- Standards
- Provided by manufacturers

Is product fit for normal to extreme operating conditions?

Classical approaches Qualification testing – what do we want?

Shock and vibration levels

Vibration control system

- Handbooks
- **Standards**
- Provided by manufacturers

Is product fit for normal to extreme operating conditions?

More realistic qualification testing Use of recorded infield data

Representative shock and vibration levels

Vibration control system

Is product fit for normal to extreme operating conditions?

Unrestricted © Siemens AG 2015

Page 8 2015-11-25 Siemens PLM Software

Mission Synthesis

Goal of Mission Synthesis

- Derive vibration qualification specs based on measurements
- Compare to current standards
- Suggest evolution of standards

Real life

HOW?

Shakertable

Analysis and Synthesis of the environments

Unrestricted © Siemens AG 2015

Goal Mission Synthesis in this project

Goal

Validate if the VHF-radio's on the new console survive the vibration environment of the police helicopter without additional shaker tests

Principle

- VHF-radio on original console survives all vibrations from helicopter (no issues reported)
- Compare damage due to vibrations between old and new console New console better or worse?
- What about MIL-STD810G standard? Needed or not?

How?

- Measure vibrations in different flightconditions on both consoles
- Calculate damage potential and compare

Procedure

Step 1: Define mission

Step 2: Calculate
damage info

Test & Unc. factor

Step 4: Compare with standard

Step 5: Test PSD

Page 11 2015-11-25 Siemens PLM Software

Step 1: Define mission

New console

Power up $(1\% = 300h) \rightarrow \text{Run } 9$ test: 88,6s \rightarrow 12 190 repetitions

Hover on ground (5% = 1500h) → Run 6 test: 43,9s → 123 007 repetitions

Take off (5% = 1500h) → Run 3 test: 27,0s → 200 000 repetitions

Hover off ground (18% = 5400h) \rightarrow Run 11 test: 82,4s \rightarrow 235 922 repetitions

80 knot $(40\% = 12000h) \rightarrow \text{Run } 12$ test: $27.3s \rightarrow 1582418$ repetitions

120 knot (25% = 7500h) \rightarrow Run 13 test: 41,2s \rightarrow 655 340 repetitions

Landing + Power down (6% = 1800 h) →
Run 17
test: 85,9s → 75 437 repetitions

Old console

Hover on ground (6% = 1800h) \rightarrow Run 01-ground test: 36,4s \rightarrow 178 022 repetitions

Take off (5% = 1500h) → Run 02-Take off test: 15,0s → 360 000 repetitions

Hover off ground (18% = 5400h) → Run 04-hover off ground test: 61,9s → 314 055 repetitions

80 knot (40% = 12000h) → Run 80 kts test: 61,5s → 702 439 repetitions

110 knot (25% = 7500h) → Run 03-110kts test: 61,8s → 436 893 repetitions

Landing (6% = 1800h) → Run 07-landing test: $42.9s \rightarrow 151049$ repetitions

Step 2: Calculate damage potential

Qualify different flightconditions on the potential damage creation due to vibrations

Damage related information needs to be extracted from the time measurements

Two important results:

- MRS Maximum Response Spectrum
 Takes into account damage from high amplitude vibrations
- FDS Fatigue Damage Spectrum
 Calculates damage coming from low amplitudes but high number of cycles (long duration)

MRS and FDS

- Calculated seperately for each flight condition
- All results combined in one final MRS and FDS

Step 2 : Calculation of overall damage

- Combine spectra (MRS/FDS) of the different situations to an overall life cycle MRS/FDS
- Concept of keeping the highest damage potential

Step 2: Synthesize FDS & MRS

Step 2: Synthesize FDS & MRS Comparison between old and new console

Step 2: Synthesize FDS & MRS Comparison between old and new console

Comparison

- Old console has overall higher FDS than new console, except at 33 Hz, the
 5th harmonic (blade passing frequency)
- 33 Hz is resonance in old & new console, but more distinct in new console.
- 65 Hz and 98 Hz are highly damped in new console, clearer peaks in old console.
- 130 Hz is mode in old & new console, shows up as a peak.

Conclusion

- Higher damage for new console at 33 Hz due to resonance and blade excitation
- New console not guaranteed to survive 30.000 hours based on this comparison

Step 3: Statistics Test & Uncertainty factors

Uncertainty factor: Limited number of measurements performed

Take into account material and environment variability

$$k = exp \left[aerf \sqrt{\left(1 + V_E^2\right)\left(1 + V_R^2\right)} - ln \sqrt{\frac{1 + V_E^2}{1 + V_R^2}} \right] \qquad aerf = erf^{-1} \left(F - \frac{1}{2}\right)$$
 With V_E = Environmental coeff of variation V_R = Material coeff of variation $F = reliability = 1 - P(failure)$

Test factor: Limited number of shaker tests planned

$$T_F = \exp\left(a^i \sqrt{\frac{\ln\left(1 + V_R^2\right)}{n}}\right)$$
 With $n = number$ of tests
$$a' = \text{probability factor for a given confidence level } \pi_0$$

$$a' = \sqrt{2} \ E_1^{-1}(\pi_0) \quad \text{With } E_1 = \text{error function}$$

Page 18 2015-11-25 Siemens PLM Software

Step 3: Test & Unc. factor

LMS Test.Lab vs Lalanne:

Unrestricted © Siemens AG 2015

Page 21 2015-11-25 Siemens PLM Software

2 Standards (Sine-on-Random):

MIL 810 G

Military standard random + 4 fixed sines

DO 160 F Civil standard random + 2 fixed sines

MIL 810 G: random + 4 fixed sines

Random:

Unrestricted © Siemens AG 2015

Page 23 2015-11-25 Siemens PLM Software

MIL 810 G: random + 4 fixed sines

Rotation speed main rotor: 392 rpm = 6,53 Hz

N = nr of blades = 5

A1 =	0,1	68	g
------	-----	----	---

$$A2 = 1,75 g$$

$$A3 = 1,05 g$$

$$A4 = 1,05 g$$

Determine 1P a	I all Kotor Frequencies and 1T from the Specific from the table (below).	
$f_1 = 1P$	$f_1 = 1T$	fundamental
$f_2 = n \times 1P$	$f_2 = m \times 1T$	blade passage
$f_1 = 2 \times n \times 1P$	$f_2 = 2 \times m \times 1T$	1st harmonic
$f_a = 3 \times n \times 1P$	$f_a = 3 \times m \times 1T$	2nd harmonic

Instrument Panel	$W_0 = 0.0010 \text{ g}^2/\text{Hz}$	3 to ≤ 10	0.70 /(10.70 - f _x)
	$W_1 = 0.010 \text{ g}^2/\text{Hz}$	>10 to 25	0.070 x f _x
	$f_t = 500 \text{ Hz}$	25 to 40	1.750
		40 to 50	4.550 - 0.070 x f _x
		50 to 500	1. 050

MIL 810 G: random + 4 fixed sines

- Timeseries Sine-on-Random: synthesised in Matlab
 - Timeseries of fixed sines + timeseries of random PSD profile
 - Simulated timerecord of 60s
 - MIL 810 G is for 4h testing, representing 2500h lifetime
 - Need 30 000h lifetime → 48h testing time needed → 2880 repetitions

MIL 810 G: Timeseries Sine-on-Random

Sine-on-Random profile calculated from timeseries plotted with the specified random PSD

PDF of the timeseries is not perfectly Gaussian anymore

DO 160 F: random + 2 fixed sines

Rotation speed main rotor: 392 rpm = 6,53 Hz = FM

NM = nr of blades = 5

$$f1 = 32,67 Hz$$

$$A1 = 2.5 g$$

$$A2 = 2,5 g$$

		Helicopter	Zone Vibration Test	Frequencies		
Zone / Test Curve	la/G	lb/G	2/G	3 / H	4/I	7/J
(1) Test Frequencies f_n	Fuselage	Tail boom	Instrument Panel Console & Equipment Rack	Nacelle & Pylon	Engine & Gear Box	Empennage, & Fin Tip
f_1	NMxFM	NMxFM	NMxFM	NMxFM	NMxFM	NMxFM
f_2	2xNMxFM	2xNMxFM	2xNMxFM	2xNMxFM	2xNMxFM	2xNMxFM
f_3		NTxFT		FE	FE	NTxFT
f_4		2xNTxFT		FG	FG	2xNTxFT

Test ⁽¹⁾ Frequency	Sinusoidal Test Levels, An, (g-PK) (2)			
Range, Hz	G	Н	I	J
$3 < f_n < 10$	0.05 x f _n	0.07 x f _n	0.1 x f _n	0.2 x f _n
$10 < f_n < 20$	$(0.2 \times f_n)$ -1.5	$(0.28 \times f_n) - 2.1$	$(0.3 \times f_n) - 2$	$(0.3xf_n) - 1$
$20 < f_n < 40$	2.5	3.5	4.00	5.00
$40 < f_n < 200$	2.5	3.5	$(0.1 \times f_n)$	5.00
$200 < f_n < 2000$			20.00	
PSD	Random curve level (g²/Hz (Grms))			
W_0	0.02 (3.89)	0.02 (3.89)	0.02 (3.89)	0.02 (3.89)

DO 160 F: random + 2 fixed sines

- Timeseries Sine-on-Random: synthesised in Matlab
 - Timeseries of fixed sines + timeseries of random PSD profile
 - Simulated timerecord of 60s
 - DO 160 F is for 2h testing, representing total lifetime (= 30 000h)
 - 2h testing → 120 repetitions needed
 - good FSD & MRS (peaks at right frequencies)

DO 180 F: Timeseries Sine-on-Random

Sine-on-Random profile calculated from timeseries plotted with the specified random PSD

PDF of the timeseries is not perfectly Gaussian anymore

Step 4: Compare with Standards

Comparison with standards

- Both DO 160 F and MIL 810 G undertest at 33 Hz (at the blade pass frequency)
- Both undertest at 130 Hz (20th harmonic of rotor frequency)

Conclusion

Unrestricted © Siemens AG 2015

- Successfull shaker tests based on standards will not guarantee lifetime of 30,000 hours of VHF radios when mounted on new console
- Design of new console is not sufficient -> Redesign necessary
- Repeat measurements and calculations after redesign

Step 5 : Test Profile Synthesis

Test Profile Synthesis

Test Profile Synthesis:

- Choose desired test (Random Control test or Sine Control Test)
- Create shaker profile based on FDS result
- Choose Total testing time using MRS result

Result:

- Profile with same damage potential as in real life
- Check if profile can be used on shaker (shaker limitations)

Step 5: Synthesise excitation PSD

Unrestricted © Siemens AG 2015

LMS Test.Lab Vibration Control

Random

- ✓ Random Control
- √ Response limiting
- ✓ Online Random & Acoustic Reduction

Sine

- ✓ Sine control
- ✓ Sine Notching
- √ Throughput recording
- ✓ Online Sine Reduction

Setup

- √ Take profile from Mission Synthesis
- √ Take corresponding testing time

Thank you

Swen Vandenberk

Siemens PLM Software Inc. Digital Factory Division Product Lifecycle Management

Simulation and Test Solutions Researchpark Haasrode (Heverlee) Interleuvenlaan 68 3001 Leuven, Belgium

<u>swen.vandenberk@siemens.com</u>
<u>www.siemens.com/plm</u>

Unrestricted © Siemens AG 2015

Page 36 2015-11-25 Siemens PLM Software