## THALES

# PLOT meeting 2023 COTS coolers for Space

**ROEL ARTS, 2023-06-22** 



www.thalesgroup.com

#### Content

- Introduction
- The Thales Group, Thales in the Netherlands
- Infrared Radation & Thermal Imagers
- Stirling and Pulse-tube cryocoolers
- Cryocooling in space instruments
- Case: NASA-JPL ECOSTRESS instrument
- Other space cryocooler examples
- **Questions?**

Corporate Communications - February 2016





#### Cryogenic applications | Positioning of Thales Cryogenics



THALES CRYOGENICS IS ACTIVE IN THE NICHE SEGMENT OF SMALL CRYOGENIC COOLERS



#### Existing products (← France // Netherlands → )

#### Rotary Stirling cooler





- RM2 Best-seller rotary
- > RM3 Drop-in replacement for market leader K508
- > RM4 High lift
- > RMs1 Low SWaP, high performance

#### Linear Stirling and Pulse tube



#### Products (Thales Cryo, Eindhoven)

- > UP series: Linear Stirling (mainly tactical)
- LSF series: Linear Stirling with flexure compressor
- > LPT series: Pulse-tube cooler with extreme lifetime
- Various space products



#### **Main Requirements**



6

OPEN

#### Cryocoolers: What are they for?

Cool down object to very low temperature

Typical operating range: Liquid Nitrogen temperature (77 K / -196°C)



#### Detector cooling: the Stirling koeler



- 1. Isothermal compression
- 2. Gas cooled down (regenerative)
- 3. Isothermal expansion
- 4. Gas heats up (regenerative)

#### Reverse Stirling cycle:

Put in mechanical power, result in pumping of heat

Theoretically this cycle can reach the maximum efficiency (Carnot efficiency) of such a process:

$$COP = (T_I/(T_h-T_I)$$

8

OPEN

#### Cryocooler Reliability (Bread and butter of Thales Eindhoven)



#### **Compressor life: flexures**



#### Cold finger life: Pulse tube





"Displacer" not needed:

- "Gas displacer"
- No moving solid parts in cold finger -> No wear, low vibration



### **Our Space Footprint**



Corporate Communications - February 2016





> Full Space:

**Customer Value:** 

- Compliant to ECSS or NASA standards

**SPACE** segmentation according to

New Space:

- Designed to fully comply on technical requirements, but save(rationalize) on project cost

> COTS+:

- Build it like a tactical product with some extra checks, design may not be fully compliant with space standards

1. FULL SPACE



2. NEW SPACE



3. COTS+



#### General principle:

- > Field-proven and life time test-proven reliability of many COTS/tactical cooler designs exceeds the R required for space
- Take a commercial-grade high-reliability cryocooler and justify flight
  - Example: the Thales LPT9310 series as used for ECOSTRESS and EMIT (JPL)
- Or use proven design elements from tactical cryocoolers in a highperformance designed-for-space cryocooler
  - > Example: The Thales LSF9199/30 cooler
- Use a rationalized set of testing to justify use as FM

- Additional batch-level inspections on critical parts
  - > Identify points where COTS-standard inspections are not sufficient
- Additional burn-in
  - > Eliminate any workmanship or part-related infant mortality
- Random Vibration Test
- **Thermal Vacuum Test**
- Additional compressor diagnostics (ring-down testing)
- Extended drying/curing (100 C vacuum applied to cooler internals)
  - > Eliminate risk of contamination issues

- Thales Cryogenics has built >3000 for non-space use
- Proven reliability of COTS coolers:
  - > In use 24/7
  - > Proven high availability, >99% after 5 years of 24/7 use
- COTS build standard is 1 or 2 orders of magnitude cheer grade" build standard
- ... That is why NASA JPL was anxious to try an "off-the-shelf" Thales cooler in an actual space mission



#### Standard LPT9310 – Specific ECOSTRESS validation

- Leak test -> Proof test (reduced ratio) -> Leak test < 6x10<sup>-9</sup>Pam<sup>3</sup>/s
- Random vibration tests with 100g additional mass on cold tip-> 10.1 grms
  - > Make sure the product survives launch!
  - Notching of spectrum based on pulse tube deflection, in discussion with JPL
- No performance degradation after tests
- Burst test performed
  - > Pressurized hardware
  - > Tested for safety







#### Conducted thermal performance tests assuming worst cased environmental conditions on the ISS

- > 24°C fluid inlet temperature at 155 kg/hr delivery rate
- Compressor input power limit of 140 W
- ➤ At 65 K the estimated Ecostress focal plane thermal load is 1.3 W to each cooler; a 5K temperature gradient was assumed for the thermal strap to the 60 K coldtip
- At 140 W input power, the 60 K cold tip could deliver 1.3 W of cooling, leaving virtually zero margin in the cooling capability
- Thales was contracted to execute a <u>Form-Fit</u> performance upgrade on a <u>tight schedule</u>





#### High performance LPT9310 – Trade-off results

#### Objective:

- > Increased cooling performance
- Minimimise risks (design and schedule)
- > No impact on interface

#### Approach

- > Trade-off analysis of all pulse-tube redesign options that have been investigated by TCBV in the past:
- > Contront each option to:
  - Improvement
  - Risk / heritage
  - Interface impact



#### **Trade-off results**

| 2015 All rights res | Design option                                 | Interface<br>impact? | Process and schedule risk?                   | Selected<br>? |
|---------------------|-----------------------------------------------|----------------------|----------------------------------------------|---------------|
| Indles              | Optimized regenerator design                  | None                 | Low                                          | Yes           |
| 0                   | Low conductance material between hot and cold | None                 | Medium -> heritage available                 | Yes           |
| n consent o         | High-conductance material on warm side        | None / Low           | High -> impact on design, metal seals needed | No            |
| WIIITE              | Optimized cold heat exchanger                 | Medium               | Medium – limited heritage                    | No            |
| le phor             | Optimized warm side heat exchange             | Medium               | High                                         | No            |
| nout tr             | Optimised inertance                           | High                 | High                                         | No            |

Expected performance gain at 60K: ~700 mW

20

#### High performance LPT9310 – Process qualification approach

#### Approach:

- > Process delta qualification
- > Pressure tests on product level

#### Involved processes

- Brazing process
- > Welding process

#### Samples for

- > Tensile test
- > Micrographic inspection





DEN

#### **LPT9310-HP**

- > High-performance definition designed, built & Tested
  - Low-conductance tube
  - Optimized regenerator matrix
- > Full test campaign, including:
  - Pressure cycling
  - Temperature cycling
  - Random vibration









Standard LPT9310 used as Engineering Model / Performance verification

Updated interface requirements necessitate upgrade (no margin)

Changes with minimal risk, maximal gain selected

■ Delta qualification performed, >700 mW of performance gained at 60 K

Launched June 2018

Corporate Communications - February 2016



















#### Telemetry since power-on



#### Happy customer! -> Two awards for Thales Cryo



THALES

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

#### So why did we get these awards?

- Pragmatic approach
  - ➤ Both sides approached the project as a partnership rather than "supplier/customer"
- Product has exceeded requirements & expectations
- Quick support, answers to questions
- Open and transparent communication -> also when facing problems
  - > Failure during testing (problem on Thales side)
  - > Failure during instrument integration (problem on JPL side)
  - > Failure on-orbit (problem on JPL side)

OPEN



#### EMIT (NASA JPL) – Follow-up program, launched June 2022

- Earth Surface Mineral Dust Source Investigation
- 1x LPT9310 to provide cooling at 155 K
- IRIS HP-LCCE2 drive electronics used









THALES

#### Thales LPT9510 & LPT9310: FM built and delivered

| Cryocooler                   | Customer             | Mission               | Status                                                                      |
|------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------|
| 1x LPT9510<br>2x COTS CDE    | Raytheon             | TacSat-3 /<br>Artemis | Launch May 2009, burn-up on re-entry after 3 years of nominal operation     |
| 3x LPT9310-HP<br>6x COTS CDE | NASA JPL             | ECOSTRESS             | Instrument turn-on July 2018, 3 units >40000 hours without any degradation. |
| 1x LPT9310                   | NASA JPL             | EMIT                  | Instrument turn-on July 2022, operation nominal to date                     |
| 1x LPT9310                   | AIRS                 | Undisclosed           | Launch date not disclosed to Thales                                         |
| 7x LPT9310                   | Undisclosed<br>(USA) | Undisclosed           | First unit launched 2023. Follow-up order received.                         |
| 3x LPT9510                   | Undisclosed<br>(USA) | Undisclosed           | Delivered in 2020, launch date not disclosed to Thales                      |
| 4x LPT9510                   | Undisclosed<br>(USA) | Undisclosed           | Delivered in 2022, launch date not disclosed to Thales                      |

# Thank you for listening! Questions?

