

Reliability Test Plan Creation

Prove Reliability by Testing

PLOT Showcase 12 October 2023

Ronald Schop - Holland Innovative

Introduction

Holland Innovative

High Tech Campus Eindhoven

Ronald Schop Sr. Reliability Specialist

- Reliability Competence Coach
- Strategic Projects at Customers •
- Developing Reliability Academy
- User Groups, Seminars and Executive Events on Reliability

Content

- **1. Reliability Testing Goals**
- 2. Drivers in Reliability testing
- 3. Accelerated Life Testing
- 4. Types of Testing for Life
- 5. Reliability Test Plan Specification

1 - Reliability Testing Goals

2 - Drivers in Reliability Testing

3 - Accelerated Life testing

In all types of tests, we may use Acceleration Factors to reduce test-time

1. Classical testing – No Acceleration

2. Accelerated Life Test - ALT

- Time compression
- Stress acceleration

Classical Reliability testing Not Accelerated

Advantages:

- No assumptions about acceleration models / factors
- Real Life data customer usage
- All failure modes!
- Including (subjective) customer feedback
- No discussion about translation of results to field performance...

• Drawback...

- Long testing times
- Large sample sizes
- Did we pick the "right" customers...?

PLOT SHOWCASE			hi
12 OKTOBER 2023 - FHI LEUSDEN	Copyright Holland Innovative B.V.	7	innovative
7			

Accelerated Life Test - ALT

1. Time compression

 Test more operating hours per day than in normal usage

2. Stress acceleration

 Test on a higher stress than in normal usage

Compress along TIME axis

- Suitable for products used on continuous time basis
 - Like tires, toasters, heaters, light bulbs ...

• Examples :

- Light bulbs : instead of the normal 6h/day increase to 24h/day
- Tires : instead of 70 km /day seventy days of continuous use
- Safety related aerospace components : 48000 take-off and landings ; perform in 6 days by compressing the time history and increasing the cycle frequency

No additional assumptions are needed ... ?

Accelerate along STRESS axis

Suitable for products failing faster when

- **Older**...product 'ages' over time so fails faster in time
- Time can be days, operational hours, mileage, cycles, etc.
- Stressed more....increased stress leads to faster failures

• Examples :

- Light bulbs : instead of the normal 3 Volt increase to 5 Volt stress
- PCB : instead of normal 30 degr C increase to 70 degr C
- Bearings : instead of normal 60 RPM increase to ...
- No additional assumptions are needed ...?

For Accelerated Life Testing - ALT

For setting-up and analyzing ALT you need 2 'models':

1. Life distribution:

- Distribution of 'Life' at ANY stress level.
- Models: Weibull, LogNormal, Exponential

2. Life-Stress model:

- Translate 'life' from any stress level to any **other** stress level
- Models: Statistical, Physics-Statistics, Physics-Experimental

11

PLOT SHOWCASE

Life-Stress model - example

 Life-Stress model: translate 'Life' from any stress level to life at any other stress level

Life-Stress models

- **Basic assumption:** the same failure mechanism is observed at normal use level and at the accelerated stress level
- So: Identical failure mechanisms !
 - e.g. Fatigue crack at normal use level (Field) and same crack in ALT at the higher stress level

Available life-stress models

- 1. Statistics-based models (Weibull, Lognormal, Linear,...)
- 2. Physics-experimental based models (Wohler, Black's,...)
- 3. Physics-statistics based models (Arrhenius, Power Law, Coffin-Manson)

PLOT SHOWCASE		hi
12 OKTOBER 2023 - FHI LEUSDEN	Copyright Holland Innovative B.V. 13	innovative
4.2		

13

4 - Test for Life/Reliability- 3 Types

1. Quality Acceptance testing

- Zero failure testing = Fully Censored Testing
- Zero-One failure testing

2. Degradation testing

Degradation MUST be measurable

3. Testing with Failures

- To prove High Reliability Requirements
- To assure / check we have the correct failure mechanism
- To defining the Life-Stress model (e.g., SN curve)
- Step Stress test = test to failure with known Life-Stress model

Test for Life/Reliability- 3 Types

1. Quality Acceptance testing

- Zero failure testing = Fully Censored Testing
- Zero-One failure testing

2. Degradation testing

- Degradation MUST be measurable

3. Testing with Failures

- To prove High Reliability Requirements
- To assure / check we have the correct failure mechanism
- To defining the Life-Stress model (e.g., SN curve)
- Step Stress test = test to failure with known Life-Stress model

			hi
12 OKTOBER 2023 - FHI LEUSOBN	Copyright Holland Innovative B.V.	15	innovative
15			

Quality Acceptance testing Zero/Zero-One failure = Binomial Table 8-1. Success Testing Tables For Demonstrating Reliability and Quality

	·					1 (0 ()			
			-	Con	fidence Leve	el (%)	000/	1 00 00/	20.000/
Reliability	50%	60%	70%	80%	90%	95%	99%	99.9%	99.99%
0.9999	6932	9163	12040	16094	23025	29956	46050	69075	92099
0.999	693	916	1204	1609	2302	2995	4603	6905	9206
0.998	347	458	602	804	1151	1497	2301	3451	4601
0.997	231	305	401	536	767	998	1533	2300	3066
0.996	173	229	301	402	575	748	1149	1724	2298
0.995	139	183	241	322	4 6 0	598	919	1379	1838
0.99	69	92	120	161	230	299	459	688	917
0.95	14	18	24	32	45	59	90	135	180
0.90	7	9	12	16	22	29	44	66	88
0.85	5	6	8	10	15	19	29	43	57
0.80	4	5	6	8	11	14	21	31	42
0.75	3	4	5	6	9	11	17	25	33
-				-		5	7	10	14
0.50	1	2	2		4	5	/	10	
0.50	1	2 All i	fractions of t	the number of	of tests are ro	unded upwa	ard.		
0.50 N	1 umber Of	2 All i Tests With	fractions of t	the number of Failure All	of tests are ro lowed (1-cor	unded upwa	$\frac{1}{\mathbf{R}^{\mathbf{n}} + \mathbf{n}(\mathbf{R}^{(\mathbf{n})})}$	⁻¹⁾ * (1-R))	
0.50 N	1 umber Of	2 All i Tests With	2 fractions of t Up To One	the number of Failure All Co	of tests are ro lowed (1-con onfidence Lo	nfidence) =	$\frac{n}{\mathbf{R}^{n} + \mathbf{n}(\mathbf{R}^{(n)})}$	⁻¹⁾ * (1-R))	
0.50 N Reliability	1 umber Of 50%	2 All 1 Tests With 60%	2 fractions of t Up To One 70%	3 the number of Failure All Co 80%	4 of tests are ro lowed (1-con onfidence Lo 90%	nfidence) = evel 95%	$\frac{\mathbf{R}^{n} + \mathbf{n}(\mathbf{R}^{(n)})}{99\%}$	⁻¹⁾ * (1-R)) 99.9%	99.99%
0.50 N Reliability 0.9999	1 umber Of 50% 16784	2 All 1 f Tests With 60% 20223	2 fractions of 1 Up To One 70% 24392	3 the number of Failure All Co 80% 29943	4 of tests are ro lowed (1-con onfidence Lo 90% 38896	<u>punded upw:</u> nfidence) = evel 95% 47437	ard. Rⁿ + n(R⁽ⁿ) 99% 66381	-1) * (1-R)) 99.9% 92331	99.99% 117559
0.50 N Reliability 0.9999 0.999	1 1 50% 16784 1679	2 All 1 f Tests With 60% 20223 2022	2 fractions of 1 Up To One 70% 24392 2439	3 the number of e Failure All Co 80% 29943 2994	4 of tests are ro lowed (1-con onfidence La 90% 38896 38896 3889	sunded upwa nfidence) = evel 95% 47437 4742	Rⁿ + n(R⁽ⁿ) 99% 66381 6636	99.9% 92331 9230	99.99% 117559 11751
0.50 N Reliability 0.9999 0.999 0.998	1 50% 16784 1679 839	2 All 5 f Tests With 20223 2022 1011	2 fractions of 1 Up To One 24392 2439 1219	3 the number of e Failure All 29943 2994 1497	4 of tests are ro lowed (1-cor onfidence La 90% 38896 38896 3889 1944	Jounded upwa nfidence) = evel 95% 47437 4742 2371	ard. Rⁿ + n(R⁽ⁿ) 99% 66381 6636 3317	99.9% 92331 9230 4613	99.99% 117559 11751 5873
0.50 Reliability 0.9999 0.999 0.998 0.997	1 50% 16784 1679 839 560	2 All Tests With 60% 20223 2022 1011 674	2 fractions of 1 a Up To One 24392 2439 1219 813	3 the number of e Failure All Co 80% 29943 2994 1497 998	4 of tests are ro lowed (1-cor onfidence Lo 90% 38896 3889 1944 12296	s ounded upw: nfidence) = evel 95% 47437 4742 2371 1580	ard. $\mathbf{R}^{n} + \mathbf{n}(\mathbf{R}^{(n)})$ 66381 6636 3317 2210	99.9% 92331 9230 4613 3074	99.99% 117559 11751 5873 3914
0.50 Reliability 0.9999 0.999 0.998 0.997 0.996	1 50% 16784 1679 839 560 420	2 All Tests With 60% 20223 2022 1011 674 506	2 fractions of 1 Up To One 24392 2439 1219 813 610	3 the number of e Failure Al 29943 2994 1497 998 748	4 of tests are ro lowed (1-cor onfidence Lo 38896 38896 38896 1944 1296 971	s sunded upwa affidence) = evel 95% 47437 4742 2371 1580 1185	ard. $\mathbf{R}^{n} + \mathbf{n}(\mathbf{R}^{(n)})$ 66381 6636 3317 2210 1657	99.9% 92331 9230 4613 3074 2305	99.99% 117559 11751 5873 3914 2934
0.50 Reliability 0.9999 0.999 0.999 0.997 0.996 0.995	1 50% 16784 1679 839 560 420 336	2 All Fests With 20223 2022 1011 674 506 404	2 fractions of 1 Up To One 24392 2439 1219 813 610 487	3 the number of e Failure Al Co 80% 29943 2994 1497 998 748 598	4 of tests are ro lowed (1-con onfidence La 90% 38896 38896 38896 1944 1296 971 777	ounded upwi nfidence) = evel 95% 47437 4742 2371 1580 1185 947	ard. $\mathbf{R}^{n} + \mathbf{n}(\mathbf{R}^{(n)})$ 66381 6636 3317 2210 1657 1325	99.9% 92331 9230 4613 3074 2305 1843	99.99% 117559 11751 5873 3914 2934 2346
0.50 Reliability 0.9999 0.999 0.998 0.997 0.996 0.995 0.99	1 50% 16784 1679 839 560 420 336 168	2 All Tests With 60% 20223 2022 1011 674 506 404 202	2 fractions of 1 Up To One 24392 2439 1219 813 610 487 244	3 the number of e Failure AI 29943 2994 1497 998 748 598 299	4 of tests are ro lowed (1-cor 90% 38896 38896 3889 1944 1296 971 777 388	Junded upwing nfidence) = evel 95% 47437 4742 2371 1580 1185 947 473	R ^{n} + n (R ^{(n}) 99% 66381 6636 3317 2210 1657 1325 662	99.9% 92331 9230 4613 3074 2305 1843 920	99.99% 117559 11751 5873 3914 2934 2346 1171
0.50 Reliability 0.9999 0.999 0.997 0.996 0.995 0.995 0.995	1 50% 16784 1679 839 560 420 336 168 34	2 All f Tests With 60% 20223 2022 1011 674 506 404 202 40	2 fractions of 1 Up To Ond 24392 2439 1219 813 610 487 244 49	3 the number c e Failure AI Cc 29943 2994 1497 998 748 598 299 59	4 of tests are rc lowed (1-co onfidence L 90% 38896 38896 38896 3889 19/44 1296 971 7/7 7/7 388 577	Junded upwinfidence) = evel 95% 47437 4742 2371 1580 1185 947 473 93	R ^{n} + n (R ^{(n}) 99% 66381 6636 3317 2210 1657 1325 662 130	99.9% 92331 9230 4613 3074 2305 1843 920 181	99.99% 117559 11751 5873 3914 2934 2346 1171 230
0.50 Reliability 0.9999 0.999 0.997 0.996 0.995 0.995 0.99 0.995 0.99 0.995 0.99 0.995 0.990	1 50% 16784 1679 839 560 420 336 168 34 17	2 All Tests With 60% 20223 2022 1011 674 506 404 202 40 20	2 Up To One 70% 24392 2439 1219 813 610 487 244 49 24	3 e Failure AI e Failure AI 29943 29943 1497 1497 998 748 598 299 59 29 29 29	4 of tests are rc omfidence La 90% 38896 38896 38896 971 777 388 777 388 777 388 777 388	unded upw. nfidence) = evel 95% 47437 4742 2371 1580 11185 947 473 947 473 947 473 473 947	Rⁿ + n(Rⁿ) 66381 66381 6636 3317 2210 1657 1325 662 130 64	10 -1) * (1-R)) 99.9% 92331 9230 4613 3074 2305 1843 920 181 89	99.99% 117559 11751 5873 3914 2934 2346 1171 230 113
0.50 Reliability 0.9999 0.999 0.999 0.999 0.995 0.995 0.99 0.995 0.995 0.99 0.995 0.99 0.995 0.99 0.995 0.955	1 50% 16784 1679 839 560 420 336 168 34 17 11	2 All Tests With 60% 20223 2022 1011 674 506 404 202 400 13	2 fractions of 1 Up To One 70% 24392 2439 1219 813 610 487 244 49 244 16	3 6 Failure AI 6 Failure AI 29943 29943 29943 2994 748 598 299 599 19	4 f tests are rc lowed (1-co onfidence L 38896 38896 38896 3889 1944 1296 971 777 388 77 388 77 388 25	ymplex ymplex nfidence) = evel 95% 47437 4742 2371 1580 1185 947 473 93 46 30 30	rard. Rⁿ + n(R⁽ⁿ⁾ 66381 66381 6636 1317 1325 662 130 64 42	-1) * (1-R)) 99.9% 92331 9230 4613 3074 2305 1843 920 181 89 58	99.99% 117559 11751 5873 3914 2934 2346 1171 230 113 73
0.50 Reliability 0.9999 0.999 0.999 0.997 0.996 0.995 0.885 0.880 0.8	1 50% 16784 1679 839 560 420 336 168 34 	2 All Tests With 60% 20223 2022 1011 674 506 404 202 40 20 13 10	2 fractions of 1 Up To One 24392 2439 1219 813 610 487 244 49 244 49 244 16 12	3 6 Failure Al 6 Failure Al 29943 29943 29943 2994 1497 998 748 598 299 59 59 59 19 14	4 of tests are rc lowed (1-cor onfidence L 90% 3889 1944 1296 971 777 388 971 777 388 25 18	Junded upwinfidence) = evel 95% 47437 4742 2371 1580 1185 947 473 93 46 30 22	rad. Rⁿ + n(R⁽ⁿ⁾ 66381 6636 3317 2210 1657 1325 662 130 64 42 31	10 99.9% 92331 9230 4613 3074 2305 1843 920 181 89 58 42	99.99% 117559 11751 5873 3914 2934 2346 1171 230 113 73 54
0.50 Reliability 0.9999 0.999 0.999 0.999 0.997 0.995 0.995 0.990 0.995 0.990 0.995 0.990 0.995 0.990 0.995 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.997 0.995 0.997 0.996 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.997 0.995 0.995 0.997 0.995 0.995 0.997 0.995 0.955 0	1 100000000000000000000000000000000000	2 All Crests With 20223 2022 1011 674 506 404 202 40 40 13 10 8	2 fractions of 1 1 Up To One 70% 24392 24392 2439 1219 813 610 487 244 49 24 16 12 10	3 5 6 Failure AI Cc 80% 29943 29943 29943 29943 1497 998 748 598 299 598 299 19 14 11	4 of tests are rc lowed (1-cor 90%) 38896 38896 38896 38896 38896 38896 38896 38896 38896 38896 38896 38896 38896 38896 388 971 777 388 25 18 15	unded upw; nfidence) = evel 95% 47437 4742 2371 1580 1185 947 473 93 46 30 22 18	ard. Rⁿ + n(R⁽ⁿ⁾ 99% 66381 6638 6638 3317 2210 1657 1325 662 130 644 42 31 24	13 14 15 99.9% 92331 92331 92331 9230 4613 3074 2305 1843 920 1843 920 184 89 58 42 33	99.99% 117559 117559 11751 5873 3914 2934 2346 1171 230 113 73 54 42

Copyright Holland Innovative B.V.

holland

Zero failure test

Test time not equal to Life Requirement

17

RVP – Reliability Validation Plan Approach

Alternative to "Proving Reliability on 90% Confidence level" we can use the same formula to calculate the Confidence gained by all planned or completed tests.

$$C = 1 - R_{t0} \sum_{i=1}^{n} \left(\frac{T_i}{t_0}\right)^{\beta}$$

Test for Life/Reliability- 3 Types

1. Quality Acceptance testing

- Zero failure testing = Fully Censored Testing
- Zero-One failure testing

2. Degradation testing

- Degradation MUST be measurable

3. Testing with Failures

- To prove High Reliability Requirements
- To assure / check we have the correct failure mechanism
- To defining the Life-Stress model (e.g., SN curve)
- Step Stress test = test to failure with known Life-Stress model

			hi
12 OKTOBER 2023 - FHI LEUSDEN	Copyright Holland Innovative B.V.	19	innovative
19			

Degradation testing

• Pro's

- Reduce test times
- Less Samples are required
- Multiple observations, "failures", so no assumption of the distribution
- Con's
 - Is there a measurable degradation parameter...?
 - Can we measure accurate enough?
 - What model to select for extrapolation?
- Model is required for <u>extrapolation</u>... Typical models are;
 - Linear Archer's Law
 - Exponential
 - Power Law

Test for Life/Reliability- 3 Types

1. Quality Acceptance testing

- Zero failure testing = Fully Censored Testing
- Zero-One failure testing

2. Degradation testing

- Degradation MUST be measurable

3. Testing with Failures

- To prove High Reliability Requirements
- To assure / check we have the correct failure mechanism
- To defining the Life-Stress model (e.g., SN curve)
- Step Stress test = test to failure with known Life-Stress model

Testing with Failures for High Reliability Requirements

Zero Failure test plan for high Reliability requirements leads to very large sample sizes!

		Number C	Of Tests Wit	h Zero Fail	ures Allowe	d (1-confid	$ence) = R^{n}$			
	Confidence Level (%)									
Reliability	50%	60%	70%	80%	90%	95%	99%	99.9%	99.99%	
0.9999	6932	9163	12040	16094	23025	29956	46050	69075	92099	
0.999	693	916	1204	1609	2302	2995	4603	6905	9206	
0.998	347	458	602	804	1151	1497	2301	3451	4601	
0.997	231	305	401	536	767	998	1533	2300	3066	
0.996	173	229	301	402	575	748	1149	1724	2298	٦.
0.995	139	183	241	322	460	598	919	1379	1838	٦
0.99	69		120	161	230	299	459	688	917	٦.
0.95	14	18	24	32	45	59	90	135	180	٦
0.90	7	9	12	16	22	29	44	66	88	٦.
0.85	5	6	8	10	15	19	29	43	57	
0.80	4	5	6	8	11	14	21	31	42	
0.75	3	4	5	6	9	11	17	25	33	
0.50	1	2	2	3	4	5	7	10	14	
4-10 ///										
WCASE			Copyri	ight Hollan	d Innovativ	/e B.V.			23	h

23

Stress tests with Arrhenius model

5 - Minimal content of a Reliability test specification Simplified Test Plan Flowchart

5 - Reliability Test Plan specification

5 - Minimal content of a Reliability test specification

- Subject under test.
 - Product description and system boundaries.
 - Purpose of test.
 - Type of test; Robustness, Life / Reliability
- Design Life. Years, cycles, ...
- Operating conditions. / Load distribution.
 - Normal operation conditions.
 - Use cases / user conditions.
 - Usage distribution or 90th percentile.
- Set-up of test. (Test-rig design)
 - Technical execution.
 - Environmental conditions.
- Pass/Fail criteria.
- Incl. Measurement system / MSA.
- Reliability requirement to be proven.
- Confidence level.
 - Failure Mechanism under study Physics of Failure.
 - Single stress? Multiple stressors? How to combine?
 - How to deal when multiple modes are expected?

Life Distribution to be assumed, e.g. Weibull with Beta.

PLOT SHOWCASE 12 OKTOBER 2023 - FHI LENSDEN

Copyright Holland Innovative B.V.

5 - Minimal content of a Reliability test specification

- Type of Life Testing.

- Zero failure.
- Degradation.
- Test with failures.
- Acceleration factors / Damage model.
 - Time compression.
 - Stress increase acceleration factor ALT testing Life stress model
 - Failure Model(s) to be assumed + model parameter(s)
- Life-Stress model.
 - Statistics-based (only statistics)
 - Physics-experimental based
 - o Physics-statistics based.
- How many failures are required.
- Sample size determination.
 - How many samples. (e.g., to get sufficient failures within a limited amount of time)
 - Sample variation. (Random, select max/min, batches, ...)
 - Sample maturity. (Production method, serial quality, ...
- Communication during testing.
- Final inspection / damage pattern; what is to be measured, and how.
- Report Out

Copyright Holland Innovative B.V.

PLOT SHOWCASE

Copyright Holland Innovative B.V.

29