Techniques for precise cable and antenna measurements in the field

Gustaaf Sutorius Application Engineer

March 25, 2015

Agenda

Techniques for precise cable and antenna measurements in the field

- Introduction Keysight Technologies
- FieldFox Introduction
- Antenna Measurements
- Cable Loss Measurements
- Cable Fault Measurements

Cable & Antenna Measurements March 2015, Gustaaf Sutorius

A Brief History of Keysight

Agilent Technologies

ts for 75 Years

KEYS

LISTED NYSE

1939–1998: Hewlett-Packard years A company founded on electronic measurement innovation

1999–2013: Agilent Technologies years

Spun off from HP, Agilent became the World's Premier Measurement Company. In September 2013, it announced the spinoff of its electronic measurement business

2014: Keysight begins operations

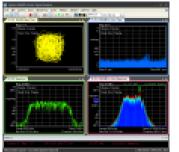
November 1, Keysight is an independent company focused 100% on the electronic measurement industry

We believe in "Firsts"

Bill Hewlett and Dave Packard's original vision launched Silicon Valley and shaped our passion for "firsts" 75 years ago. Today we are committed to provide a new generation of "firsts" – software-oriented solutions – that create value for our investors and valued insights for our customers.

KEYSIGHT

Inlocking Measurement In


Keysight Today: Unique Measurement Science

- At Keysight Technologies *Measurement Science* propagates faster
- Faster from Keysight R&D Labs to:
 - Actual Hardware (instruments)
 - Actual Software (EDA tools)
- Industry leading *Measurement Science* has been THE enabler for technical leadership in:
 - Oscilloscopes
 - Signal Generators
 - Spectrum Analyzers
 - Network Analyzers
 - HandHeld FieldFox

Keysight Measurement Science: Spectrum Analyzers

89600B VSA software Premier signal analysis

UXA 3 Hz to 26.5 GHz, 510 MHz BW Available with RTSA

PXA 3 Hz to 50 GHz, 160 MHz BW Available with RTSA

Performance

10 Hz to 44 GHz, 40 MHz BW

MXA 10 Hz to 26.5 GHz, 160 MHz BW Available with RTSA

100% code compatibility

CXA 9 kHz to 26.5 GHz, 25 MHz BW

Similar user experience

Keysight *Measurement Science:* **Vector Network Analyzers**

PNA-X (N524XA), NVNA Most advanced & flexible Microwave NA

PNA (N522XA) High-performance Microwave NA

Reach for unrivaled excellence

PNA-L (N523XA) Economy Microwave NA

E5080A The next-generation ENA

E5071C, E5072A

E5061B, E5063A NA + ZA in one-box Low cost RF NA

High-performance RF NA

ENA Series

Drive down the cost of test 5 Hz to 20 GHz

mm-wave Solution Up to 1.1 THz

PNA-X Receiver 8530A Antenna Replacement

PNA Family

300 k to 1.1 THz

PXIe VNA Drive down the size of test

300 k to 26.5 GHz

FieldFox

Carry precision with you 30 k to 26.5 GHz SIGH

Page 6

Agenda

Techniques for precise cable and antenna measurements in the field

- Introduction Keysight Technologies
- FieldFox Introduction
- Antenna Measurements
- Cable Loss Measurements
- Cable Fault Measurements

FieldFox: Leveraging Measurement Science

FieldFox analyzers are the handheld extension of the best network and spectrum analyzers.

"FieldFox's result is almost identical to my PNA. I want one of these for all of my engineers."

-Senior calibration engineer from spacecraft research and development center.

FieldFox in brief

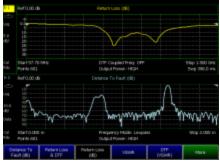
- Keysight Measurement Science (PNA-X IP) in a much smaller form factor. A true Vector Network Analyzer with 4 Receivers.
- Unique Calibration Science (InstAlign, Calready etc.) makes FieldFox measurements consistent with lab benchtop instruments
 - Calready: Impossible to make uncalibrated measurements
 - InstAlign: No warmup time. No issues with changing ambient temperatures
- Designed From Scratch as Portable Instrument (15 Watt, no fan, etc)
- Rugged: No fans or vents. Designed for rain, dust, moisture, humidity, rapid temperature changes etc. 3-year warranty
- Easy to use (CAT mode for instance)
- Independent RF Source (generate a verification signal in the field)
- Channel Power Meter allows Frequency Banded Power Measurements
 KEYSIGHT
 TECHNOLOGIES
 Cable & Antenna Measurements
 March 2015, Gustaaf Sutorius

No Warmup time & No Calibration Required

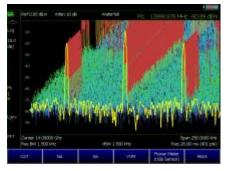
FieldFox: "more difficult to perform wrong measurements"

- Calready: Impossible to make uncalibrated measurements
 - No need to calibrate for Cable & Antenna measurements
- InstAlign: No warmup time. No issues with changing ambient temperatures.
 - No need for waiting (warm-up time) for Spectrum and Channel Power Measurements

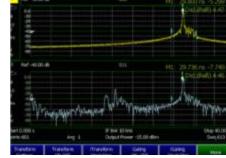
FieldFox: Precision RF&uWave Measurements in the Field


FieldFox replaces many Benchtop Instruments:

- FieldFox as Perfomance Vector Network Analyzer
- FieldFox as Cable & Antenna Analyzer
- FieldFox as Performance Spectrum Analyzer
- FieldFox as Interference Analyzer
- FieldFox as Vector Voltmeter
- FieldFox as DC Voltage Source
- FieldFox as Channel Power Meter
- FieldFox as Frequency Counter
- FieldFox as GPS Receiver
- FieldFox as Signal Generator


RF Toolbox with Laboratory Instrument Precision


Cable and antenna analysis


Spectrum analysis

Vector network analysis

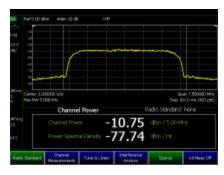
Time domain

Plus: Built-in GPS Independent source Full-band preamplifier SA frequency counter Light weight: 6.6 lbs (3.0 kg)

Long battery life: 3.5 hrs Bright display: 6.5 inch TFT

Aglianz Tochnologies N9959A, 9H. US51 300045 te (mmil med, 20 Jun 2012 103:15 PH MI: 300000 /Ht - 0.0704.dbf MI: 30000 /Ht - 0.0704.dbf MI: 300000 /Ht - 0.07

Full-band tracking generator


Vector voltmeter

DC source & current monitor

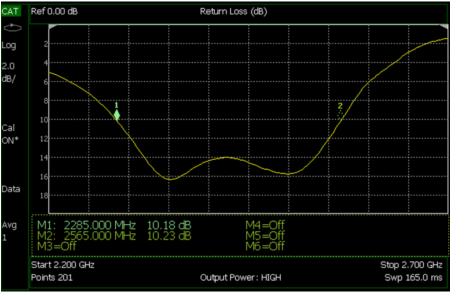
Built-in power meter

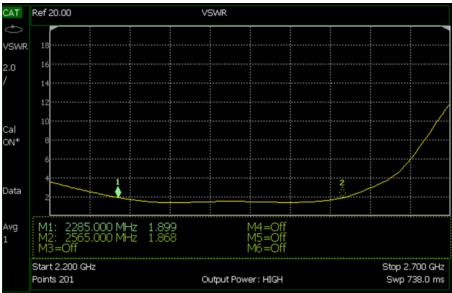
Channel power measurement

Agenda

Techniques for precise cable and antenna measurements in the field

- Introduction Keysight Technologies
- FieldFox Introduction
- Antenna Measurements
- Cable Loss Measurements
- Cable Fault Measurements


Antenna Measurements

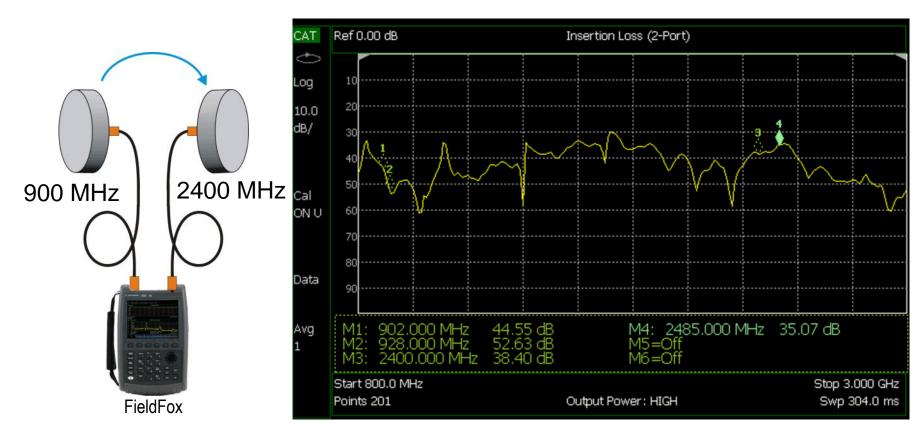


- FieldFox 2. Voltage standing wave ratio (VSWR)
 - 3. Antenna-to-antenna Isolation

Special Gain equipment Efficiency

1: Return loss (dB)

2: **VSWR**



Antenna-to-Antenna Isolation

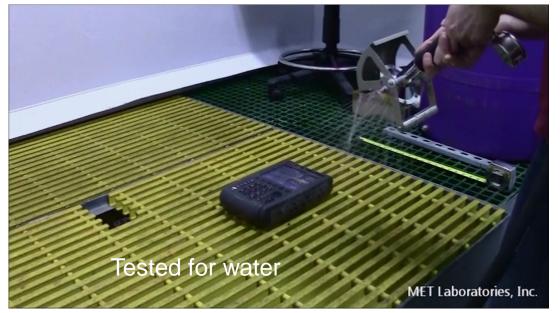
Antenna-to-Antenna Isolation Measurement

Insertion loss (2-port)

Antenna-to-antenna isolation is above 44 dB across the 900 MHz band but is only 35 dB in the 2.4 GHz band. In this case, the system spec calls for 40 dB of isolation.

> Cable & Antenna Measurements March 2015, Gustaaf Sutorius

Page 16



FieldFox: protected for dust, spraying water, shock & vibration

Tested for dust

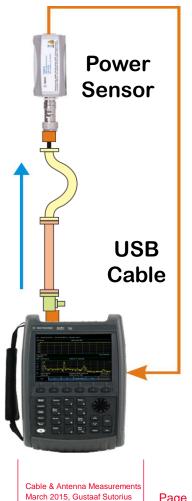
Agenda

Techniques for precise cable and antenna measurements in the field

- Introduction Keysight Technologies
- FieldFox Introduction
- Antenna Measurements
- Cable Loss Measurements
- Cable Fault Measurements

Cable Loss Measurement Techniques

2-Port 'Transmission' Loss Measurement



1-Port 'Reflection' Loss Measurement

Frequency Offset Loss Measurement

Cable Loss Measurement Techniques - Transmission

2-Port 'Transmission' Loss Measurement

50 to 100m Cable

Measurement	Typical loss	Cable length /	Accuracy /
techniques	value	installation method	comments
2-Port VNA Transmission Measures Phase and Magnitude over frequency sweep	80 to 100 dB depending on freq.(RF vs μW)	50 to 100m depending on freq.2 ends of Cable must be close enough to maintain good calibration	Most accurate method to measure Cable Loss

Cable Loss Measurement Techniques - Reflection

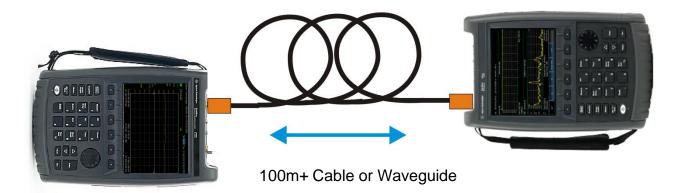
1-Port 'Reflection' Loss Measurement

< 50m Cable

Measurement	Typical	Cable length / installation method	Accuracy /
techniques	loss value		comments
Reflection measurement using FDR measures Phase & Magnitude at Port1	20 to 25dB	<50m Cable installed with difficult /restricted access at other end.	Practical but less accurate (mismatch) with less dynamic range than 2-Port Transmission method

Cable Loss Measurement Techniques (Option-208)

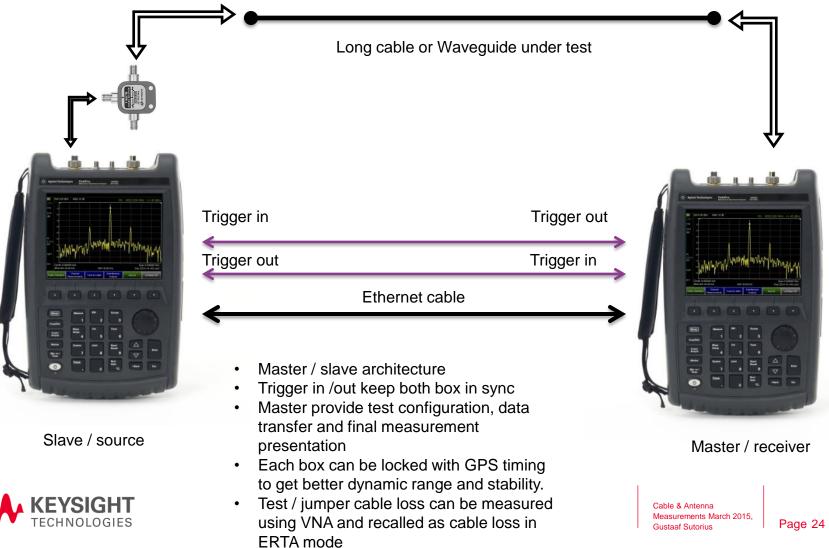
Frequency Offset Loss Measurement


Power Sensor Waveguide USB Cable

Measurement techniques	Typical loss value	Cable length / installation method	Accuracy / comments
PS (power sensor) measures power difference between 2 ends of Waveguide.	Typically 20 - 25dB depending on PS dynamic range	<50m Waveguide installed with access to other end	Slow (settling time), subject to external interference, less dynamic range than 2-Port Transmission. Normalization required

Cable Loss Measurement Techniques (Option-209)

Source – Receiver 'Transmission' Loss Measurement



Measurement techniques	Typical loss value	Cable length / installation method	Accuracy / comments
One FFox is Source, other FFox is Receiver with InstAlign technque, 'ERTA' Extended Range Transmission Analysis	60 to 100+dB (or even higher) with Pre-amp	100m+ Cable installed with access to other end of Cable or Waveguide	No Warm-up No OSLT Calibration req'd (Normalization only) x3 to x10 faster than Power Sensor Loss measurement +/-0.5dB (-10 to +55°C)

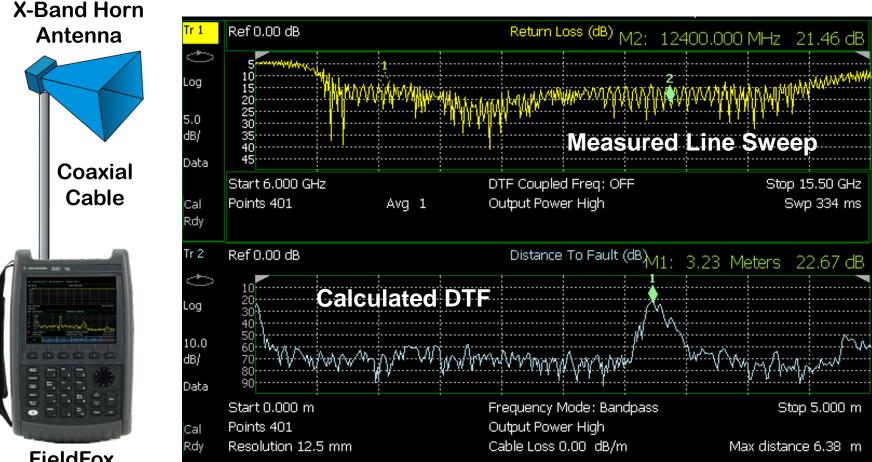
Long Cable Loss Measurements (Option-209)

ERTA Measurement setup

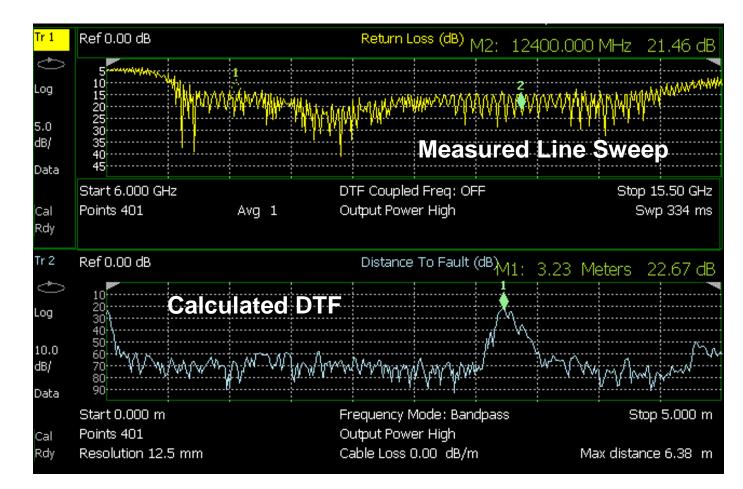
Overview of Cable Loss Measurement Techniques

Measurement technique	Dynamic Range	Accuracy	Calibration	Comments
2 Port 'Transmission' Loss measurement	Best	Best	Yes, mandatory 2-Port Cal (all systematc errors removed)	Access to both ends of Cable mandatory
1-Port 'Reflection' Loss measurement	Good - Poor	Good	Yes, mandatory 1-Port Cal (3 systematic errors removed)	Access to only one end of Cable
Power Sensor Loss measurement	Good	Good - Poor	Yes mandatory Normalization that removes only tracking (freq. response) errors	Access to both ends of Cable mandatory Results dependent on PS performance (dynamic range,settling time, etc)
Source – Receiver Loss measurement Extended Range Transmission Analysis (ERTA)	Best	Best	Yes Normalization req'd	Access to both ends of Cable mandatory +/-0.5dB accuracy x3 to x10 faster than Power Sensor method

Agenda

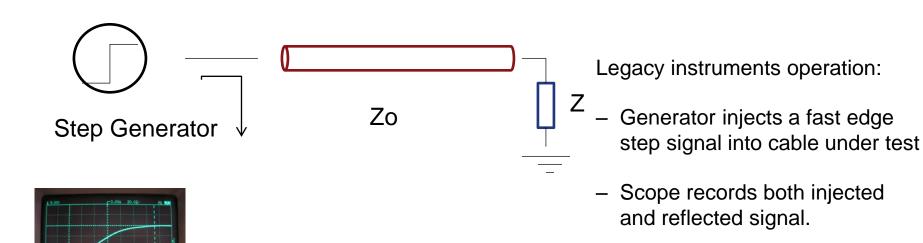

Techniques for precise cable and antenna measurements in the field

- Introduction Keysight Technologies
- FieldFox Introduction
- Antenna Measurements
- Cable Loss Measurements
- Cable Fault Measurements


Loss Measurements + CAT Distance-to-Fault (DTF)

FieldFox N9918A

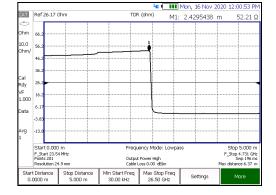
Demonstration: CAT Distance-to-Fault (DTF)

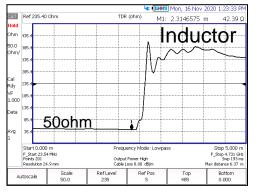


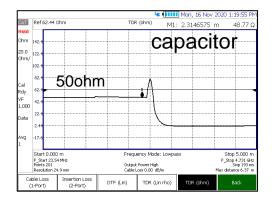
FieldFox N9918A

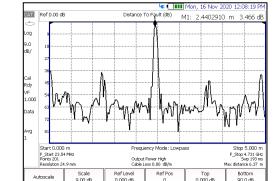
New: Time Domain Reflectometry TDR (#215)

 System rise determines the instrument resolution

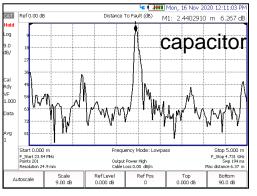

scope

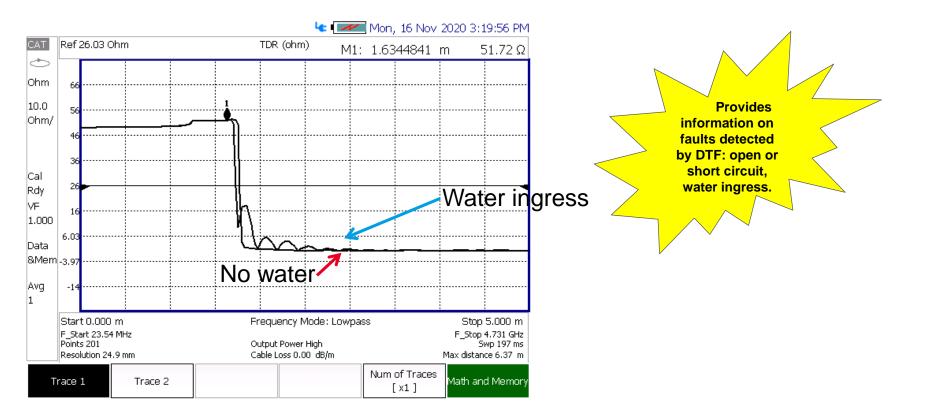



TDR: more "impedance" info on than CAT/FDR TDR indicates "Impedance Type": Inductive or Capacitive

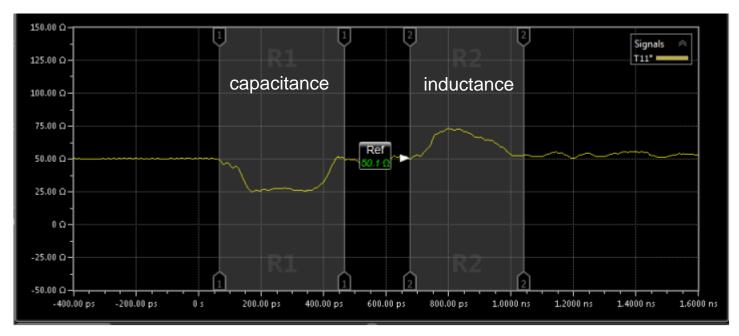


FDR





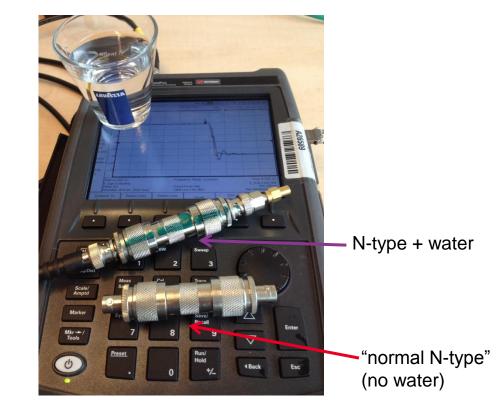
Water in transmission line using TDR



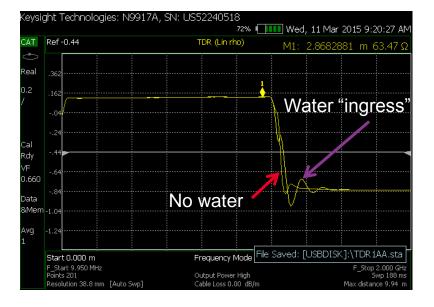
TDR trace on 86100D DCA-X TDR Lab Instrument

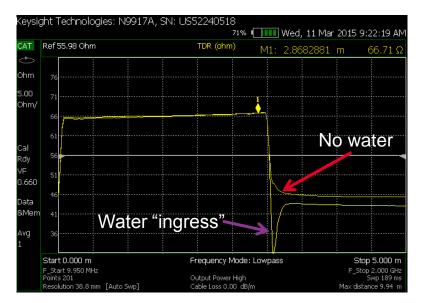
Capacitive vs inductive

TDR trace with parasitic capicitance and inductance


Shunt capacitance is negative going. Series inductance is positive going.

Demonstration: Water Poured in N-Type connector Demo Setup @ Keysight office Amsterdam


N-type connector + water: Capacitive or iInductive?



Demonstration: Water in N-Type connector "N-type + water" vs "normal N-type" (no water)

Water ingress on FieldFox

Capacitive

Cable Test Reference Material

Web Page Cable Test : <u>http://www.keysight.com/find/fieldfox</u>

Application Note Cable Test : Precise Cable & Antenna Test in the Field http://literature.cdn.keysight.com/litweb/pdf/5991-0419EN.pdf

YouTube Video Cable Test: <u>https://www.youtube.com/watch?v=ht_B_GMtG4I&list=PLWyOzUV26TwOXNHIL7Hb9Dnvti</u> <u>-LR5ZZy</u>

