

Snel besparen op energie, kosten én CO2

Marcel Kelder Smart Manufacturing specialist

24.01.23

Productie Proces Automatisering

FHI MUUSTRIËLE The influences of energy loss

O

Productie Proces Automatisering
 24 januari 2023 | Hart van Holland Nijkerk

© Yokogawa Electric Corporation

Co-innovating tomorrow™

YOKOGAWA

INDUSTRIËLE AUTOMATISERING **Return on investment**

O

FHI WAUTOMATISERING Energy and environmental management structure

FHI MUUSTRIËLE Communication challenges

0

FHI WAUTOMATISERING Key management items in accordance with ISO50001

0

EnPIs (Energy Performance Indicators)

Quantitative value or measure of energy performance, as defined by the organization

Energy Baseline

Quantitative reference(s) providing a basis for comparison of energy performance

FHI W INDUSTRIËLE AUTOMATISERING Sample of EnPls

Layer	Boundary	EnPIs
Plant	Refinery	 Oil refinery energy intensity (energy consumption of entire oil refinery) / (topping plant conversion throughput of the entire oil refinery) The topping plant conversion throughput of the entire oil refinery total {(CF value for every unit) *} (throughput for every unit)
Unit	Reforming	 Energy intensity (input energy consumption) / (the amount of feed) Energy utilization efficiency The rate of the heat recovery Capacity usage ratio
Device	Furnace	 Energy efficiency (feed heating value) / (combustion heat quantity) Heat conduction efficiency Coil path balance Air fuel ratio Exhaust gas O2 concentration
Produc	tie Proces Automatiserin	g WOKOGAWA 🔶 🖙-

Productie Proces Automatisering 24 januari 2023 | Hart van Holland Nijkerk

© Yokogawa Electric Corporation

7

Energy Baseline function is defined from historical track record of energy use and analysis with statistical method*

* It can be done by an energy specialist

Energy Digital Twin

- Real time mass balance
- Real time energy consumption
- Real time energy efficiency
- Real time emissions
- Run if then else scenarios
- KPI reporting

Real-time Energy Optimizer

- Real time cost calculation
- Real time cost savings
- Real time operator instructions

Energy KPI

O

FHI MUISTRIËLE Energy Digital Twin Functions

MONITORING & REPORTING

O

OPTIMIZATION

FUTURE

SCHEDULING & PLANNING

Productie Proces Automatisering 24 januari 2023 | Hart van Holland Nijkerk YOKOGAWA \diamond Co-innovating tomorrow 11 © Yokogawa Electric Corporation

FHI MUUSTRIËLE Monitoring and Reporting

- Accounting and auditing of utilities
- Emissions management and monitoring
- Equipment performance monitoring
- Energy system evaluation
- Corporate/site-wide visibility to energy system

OPTIMIZATION

P

Productie Proces Automatisering 24 januari 2023 | Hart van Holland Nijkerk

- Real-time emissions and KPIs
- Real-time imbalances
- Utilities Real Time Optimizer

O

	Actual	Optimized	Delta	
Boiler Plant				_
Boiler-1 FG (MSCF/HR)	100.1	31.2	-68.9	ų.
Boiler-2 Steam (KLB/HR)	106.0	61.4	-44.7	ų.
Boiler-3 FG (MSCF/HR)	72.6	69.6	-3.1	4
GTs				
Turbine-1 Electric power (MW)	41.0	42.2	1.2	1
HRSG-1 Steam (KLB/HR)	223.1	355.1	132.0	<u>۲</u>
Turbine-2 Power (MW)	0.0	0.0	0.0	=
HRSG-2 Steam (KLB/HR)	0.0	0.0	0.0	=
Re-Gasification Plant Compressors				
BOG C-101 Extraction (KLB/HR)	350.4	350.4	0.0	=
C-102 Extraction (KLB/HR)	85.1	108.5	23.4	1
Turbines and Motors Swaps	Total T/M	Swaps: 4		
Unit	Driver	Actual Status	Optimiz Status	ed S
CRUDE	TP-5103	Stopped	Runnir	ng
CRUDE	MP-5103A	A Running	Stoppe	d
CRUDE	TP-5155A	Running	Stoppe	ed
CRUDE	MP-5155	Stopped Runn		ıg
CT-PUMPS	TP-104	Stopped	Runnir	ıg
CT-PUMPS	MP-104	Running	Stoppe	d
6-CT	6P-1	Stopped	Runnir	ng
6-CT	6P-4	Running	Stoppe	ed

FHI WINDUSTRIËLE Scheduling and Planning

SCHEDULING & PLANNING

Investment planning and basic engineering Support of decision making in complex environment

Productie Proces Automatisering 24 januari 2023 | Hart van Holland Nijkerk

O

© Yokogawa Electric Corporation

Co-innovating tomorrow"

FHI WAUTOMATISERING Energy real time optimizer (ERTO)

O

24 januari 2023 | Hart van Holland Nijkerk

FHI WINDUSTRIËLE The digital twin model shows

Imbalances

- Efficiencies
- Consumptions
- Emissions

Sensor validation

- Cost calculation
- Alarms

Reporting

ream Costs								
Stream	Block Name	Flow	Units	Unit Cost (\$ per unit flow)	Cost \$ per hour	Energy	Units	Equiv He (mm H
⊿ Total: (7 item	s)				1366.45			344
600 psi	60F416	10.5997799	KLB/HR	4.0481	42.91	13.81925	mmBTU/HR	13.8
150 psi	60F417	80.9799111	KLB/HR	3.6894	298.77	99.24677	mmBTU/HR	99.2
40 psi	60F418	22.9130559	KLB/HR	2.2736	52.09	27.30591	mmBTU/HR	27.3
Water	CRUDE BFW	71.5990786	KLB/HR	0.5982	42.83	18.72962	mmBTU/HR	18.7
Electricity	Crude Power	3429.568	KW	0.0802	275.05	3429.568	KW	34.2
Fuel Oil	FO to Furnace	64.4471432	mmBTU/HR	6.0000	386.68	64.44714	mmBTU/HR	64.4
Refinery Gas	FG to Furnace	86.6605786	mmBTU/HR	3.0938	268.11	86.66058	mmBTU/HR	86.6

	(KLB/HR)	Mass/Duty (KLB/MMBTU)	Mass/Volume (KLB/MSCF)	Concentration (mass %)	Concentration (vol %)
Carbon Dioxide	9.936	0.1132	0.009191	12.48	7.884
Sulfur Dioxide	0.3344	0.003808	0.0003093	0.42	0.186
Nitrogen Oxide	0.01756	0.0002	1.625E-05	0.02206	0.000194
al	Mass	Mass/Duty	Mass/Volume	Concentration	Concentration
val	Mass (KLB/HR)	Mass/Duty (KLB/MMBTU)	Mass/Volume (KLB/MSCF)	Concentration (mass %)	Concentration (vol %)
al Carbon Dioxide	Mass (KLB/HR) 3.27	Mass/Duty (KLB/MMBTU) 0.1132	Mass/Volume (KLB/MSCF) 0.009194	Concentration (mass %) 12.48	Concentration (vol %) 7.887
Carbon Dioxide Sulfur Dioxide	Mass (KLB/HR) 3.27 0.1062	Mass/Duty (KLB/MMBTU) 0.1132 0.003678	Mass/Volume (KLB/MSCF) 0.009194 0.0002986	Concentration (mass %) 12.48 0.4055	Concentration (vol %) 7.88 0.1790

FHI MUUSTRIËLE Proactively energy saving advice

Extraction-Condensing Turbines in the Olefins plant (t/h)

KT-13001 VHP Steam Inlet	171	362	191	
KT-13001 HP Steam Extraction	0	243	243	Manual Action
KT-13001 Outlet Condensate	121	69	-52	
KT-15010 VHP Steam Inlet	194	315	121	
KT-15010 MP Steam Extraction	46	260	214	Manual Action
KT-15010 Outlet Condensate	142	48	-94	
KT-15020 HP Steam Inlet	211	240	29	
KT-15020 LP Steam Extraction	46	106	60	Manual Action
KT-15020 Outlet Condensate	141	111	-30	

Turbines and Motors Swaps	Total T/M Swaps: 2					
Area	Unit	Driver	Name	Power (HP)	Steam Levels	Action to be taken
U&O	711	Turbine	BO-71102D-BLT01	885	HP to MP	Turn Turbine OFF
U&O	711	Motor	BO-71102D-BLM01	885		Turn Motor ON
U&O	722	Turbine	PT-72201B	3500	HP to LP	Turn Turbine ON
U&O	722	Motor	PM-72201E	3500		Turn Motor OFF

Visual MESA Recommendations Report is available to everyone through the Web Browser

Productie Proces Automatisering
24 januari 2023 Hart van Holland Nijkerk

Around 3:00 AM on March 2nd, Operators applied one of the optimization actions calculated by the RTEMS and 1.05 MM\$/year of savings were immediately captured (i.e., the predicted savings trend drops)

At that time, before SK operators took any action, Visual MESA was suggesting two turbine and motors swaps and increasing the extraction in all three extraction-condensing turbines at Olefins plant

Co-innovating tomorrow[™]

Bedankt voor uw aandacht!

Meer info:

- marcel.kelder@nl.yokogawa.com
- yokogawa.com/nl/energiemonitoring

The names of corporations, organizations, products and logos herein are either registered trademarks or trademarks of Yokogawa Electric Corporation and their respective holders.