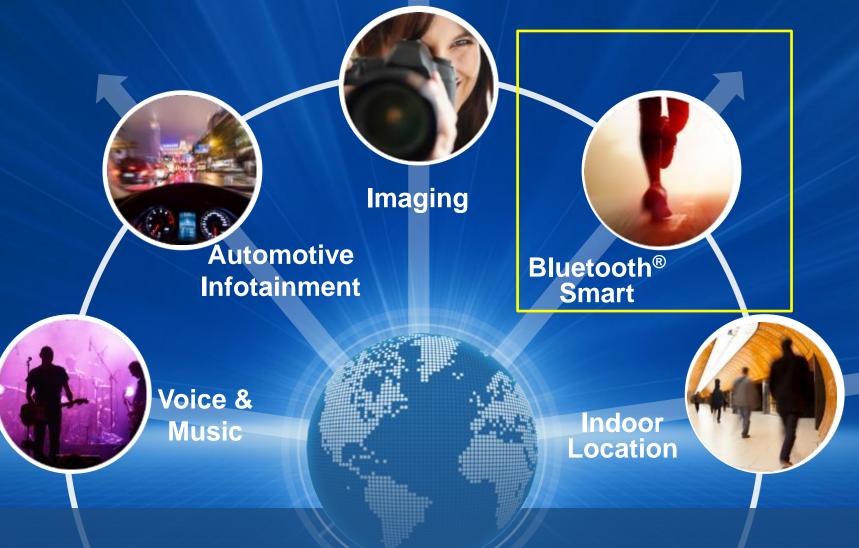
Wearables & IOT – The next challenge

Yu-Chih Chen, Christine Toh 2nd June 2015



Outline

- Introduction
- Aesthetics and Packaging
- Battery Life and Power Consumption
- Security
- Summary

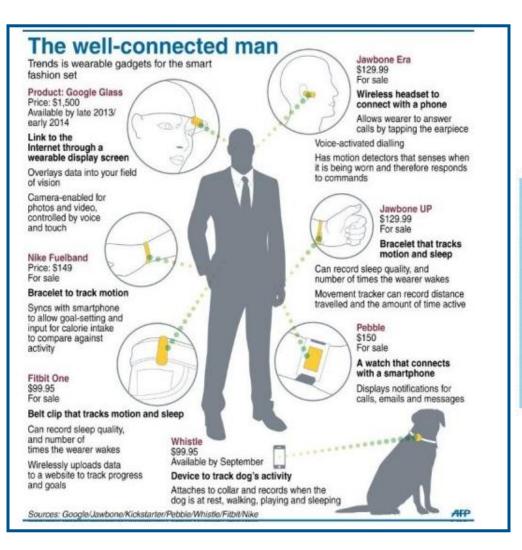
Cambridge Silicon Radio – "15 years delivering low power solutions to the consumer and automotive markets."

Five Platforms for Growth

Segments

Peripherals

- Fixed Purpose
- Always ON, targeted experience
- Connectivity : BT/BTLE
- Battery Life : ~7days
- RTOS based
- Architecture-ARM Cortex-M
- Highly integrated signal processing



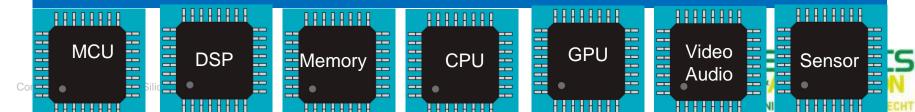
Wearable computing devices

- Multipurpose
- High Performance/rich user experience
- Drive for memory requirements
- Multimedia Rich graphics, audio etc.
- Battery Life : Everyday
- Multiple connectivity
- Full OS
- Architecture ARM Cortex-A9
- Highly integrated SOCs

The Well Connected Man [& Woman ©]

Wearable Computing Device Shipments by Category (Millions)

		2013	2014	2015
Wearable Cameras		6.64	13.61	15.81
Smart Glasses		0.01	2.13	10.57
Smart Watches		1.23	7.44	24.92
Healthcare		13.45	22.59	34.25
Sports/Activity Trackers		32.46	42.64	57.42
Wearable 3D Motion Trackers		N/A	0.87	2.00
Smart Clothing	4	0.03	0.72	1.24
	Totals:	53.90	90.00	164.20


Source: Data from ABI Research World Market Forecast: 2013 to 2019

CSR

Right mix of Performance requirements for wearables

An example: MOBILE PHONE EVOLUTION CSR

Wearables usage and design considerations

2/3/4 JUNI 2015 JAARBEURS L

User Usage

- 24/7
- Environment used in
- Wearables close to body
- Constantly ON
- Privacy protection

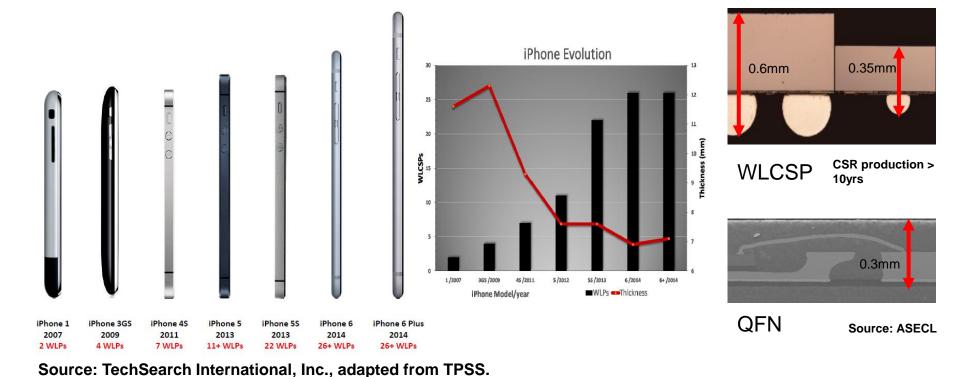
Design factors to consider

- Small form factor-sleek , thin, light
- Thermal aspect need to be comfortable to the body
- Power management
- Privacy/security measures

Aesthetic Appeal & Packaging-IF IT'S UGLY IT IS NOT WEARABLE

CSR

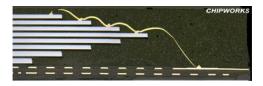
Package Technology

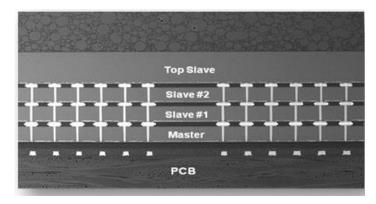

- Component package
 - Thickness and footprint
- MEMS & Sensor package
 - One device, One process, One product
 - Package technology primarily dominate the final body size
- System in Package
 - Integration of above two package

Confidential © Cambridge Silicon Radio Limited 2015

Component Package

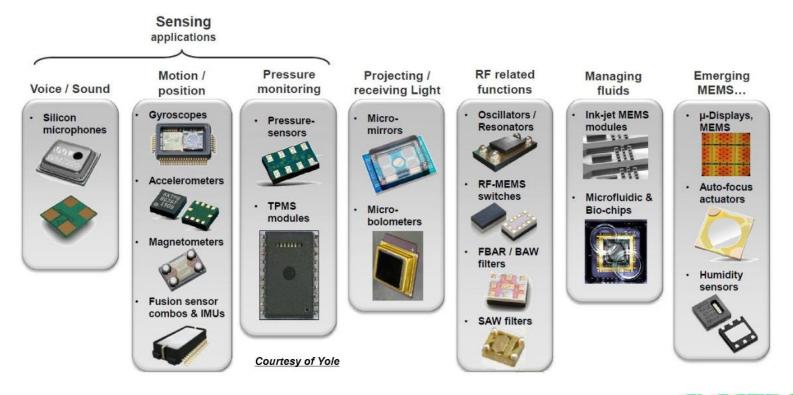
Thin package technologies
 – WLCSP, QFN


ELECTRONICS & AUTOMATION 2/3/4 JUNI 2015 JAARBEURS UTRECHT


- Small footprint package technologies
 - Higher "Silicon density" in the package (die size/package size)
- Example of silicon density
 - WLCSP = 1
 - CSP package = 0.8 ~ 1
 - 2 dies stack CSP package = 1.6 ~ 2

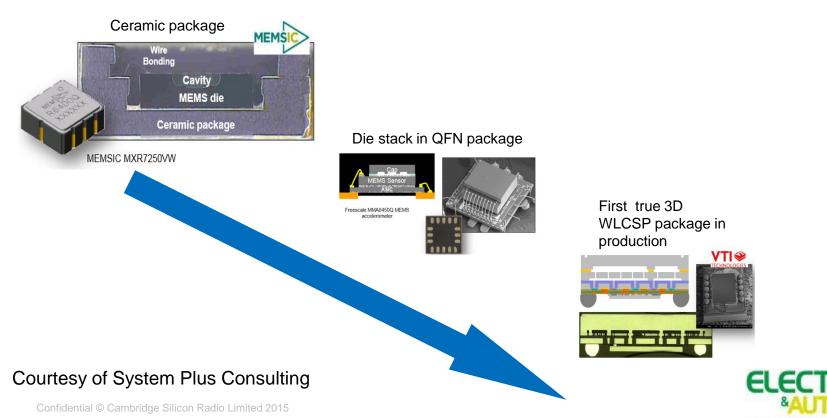
Memory die stack on top of process

Samsung's 8 Flash die stack


Samsung's 3D STV technology

MEMS & Sensor Package

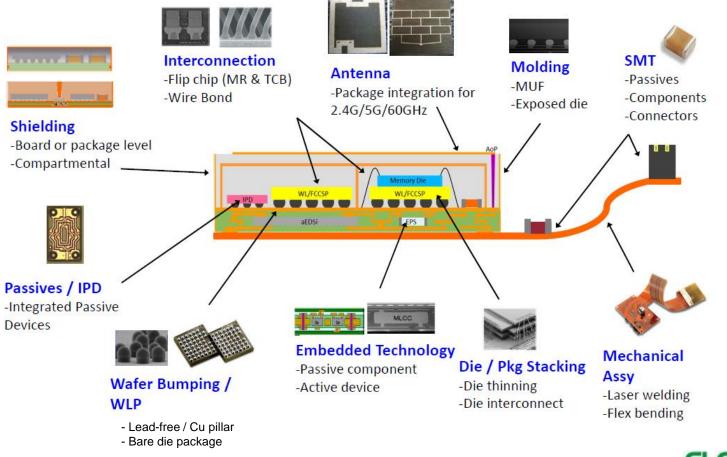
- Diversified & non-standardized package solution required
 - Problem: "One device, One process, One product"


ELECTRONICS & AUTOMATION 2/3/4 JUNI 2015 JAARBEURS UTRECHT

MEMS & Sensor Package

 Package technology primarily dominate the final body size

Ex: Accelerometer package size reduction



2/3/4 JUNI 2015 JAARBEURS UTRECH

System in Package

CSR

Enabling technologies

Courtesy of ASE

2/3/4 JUNI 2015 JAARBEU

- EX: Apple Watch S1 SiP
 - 8 layers microvia substrate with 50um L/S, and 360um thickness
 - Many packages, primarily CSP and numerous passives
 - All have a mounted height of 400um or less
 - Advanced EMI shielding technology to reduce the SiP body size
 - The entire package mounted height is 550um

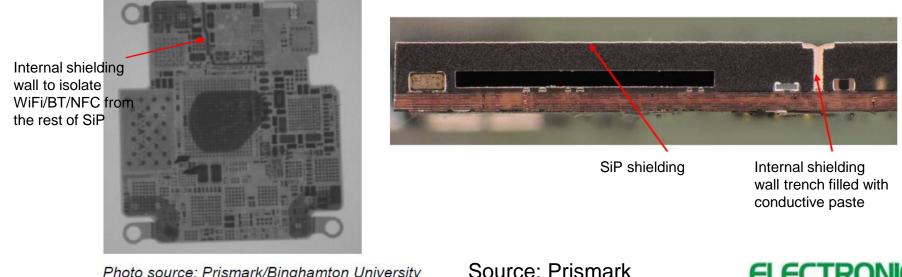
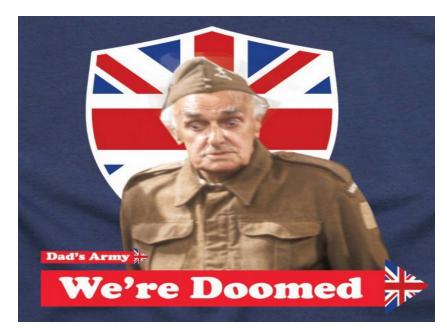


Photo source: Prismark/Binghamton University

- Components drivers are form factor and height
- Same careabouts in MEMS technology with the additional challenge that there are multiple package types
- A great variety of SIP offerings but these are likely to shrink as the market matures and finds its way
- The backstory to all of these is the cost curve
- This will come from volume and never "reinventing the wheel"



Battery Life & Power consumption

- RF connectivity during ON state are always power hungry
- Increased demand in memory space on chip (ie more RAM) give burden on batteries life
- Always ON sensors and display units consume lots of power
- Battery technology didn't evolve as quickly as we like to ...

SO?

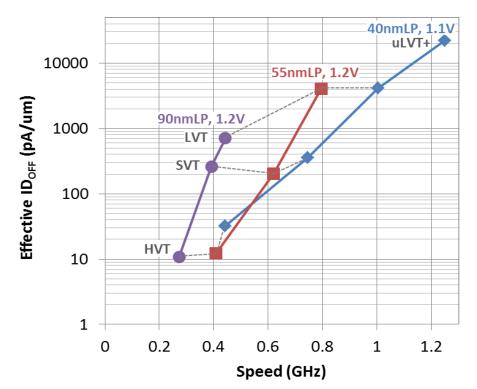
THE NEED FOR BATTERY AND CHARGING INNOVATION

2/3/4 JUNI 2015 JAARBEURS UTRECH

- Today: Li-Ion technology. The battery size ~50% of the total footprint today.
- Density/capacity of battery ~ 300mAH. Restricted density. Need constant charging for high end wearables – user experience compromised
- New technology in batteries?
 - Silicone Anode
 - Ge nonowire
 - Carbon flouride-for LP
 application wearables

- Today: Wired Micro USB charger
- New technology in charging?
 - RF wireless energy harvesting
 - Photovoltaic

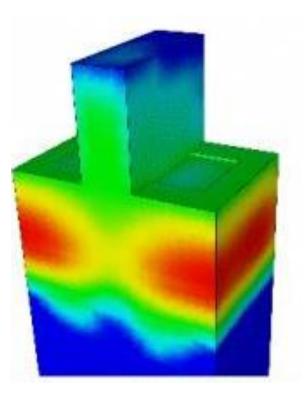
Don't expect changes to battery and charging technology overnight..... So can we do something innovative from design aspect of component level?


- Clever radio architecture can significantly reduce the active power
- Reduce the operational voltage of the system
 - Operate as many blocks as possible at a lower voltage
 - An integrated power supply is needed so that the voltage can be dynamically adjusted
- Frequency reduction
 - Operate the chip at lower frequencies, gives a linear reduction in dynamic power
- Use transistors with lowest available leakage in the process
- Avoid external components that waste power
 - External Li-Ion regulators for example reduce overall system efficiency
- etc.

This section focuses on Process Technology Improvements

CSR

Transistor Leakage Across Nodes


- Advanced CMOS transistors are optimized for higher speed and lower active power but the lowest achievable leakage is usually higher than the previous node
- Battery life is key for BT Smart as chips spend much time in standby, making leakage reduction essential
- 40ULP was conceived based on the requirements

ELECTRONICS & AUTOMATION 2/3/4 JUNI 2015 JAARBEURS UTRECHT

CSR

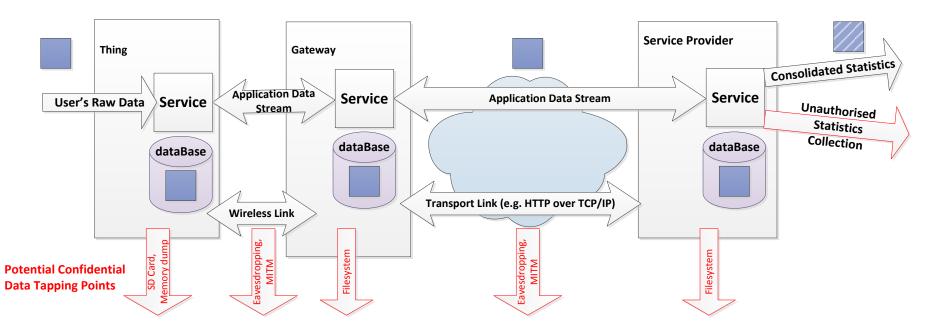
Pocket or Halo Implants

- Pocket or Halo implants are used to control the transistor threshold voltage, Vt
- They are implanted at a steep angle (37 to 45 degrees) to get dopant under the polysilicon gate
- They are key to improving the transistor off state performance whilst not compromising its performance when turned on

l _{OFF} (pA/um)	55LP 1.2V (C60)	40LP 1.1V (C50)	40ULP 1.1V (C50)
NMOS	24	33	11
PMOS	4.4	9	4

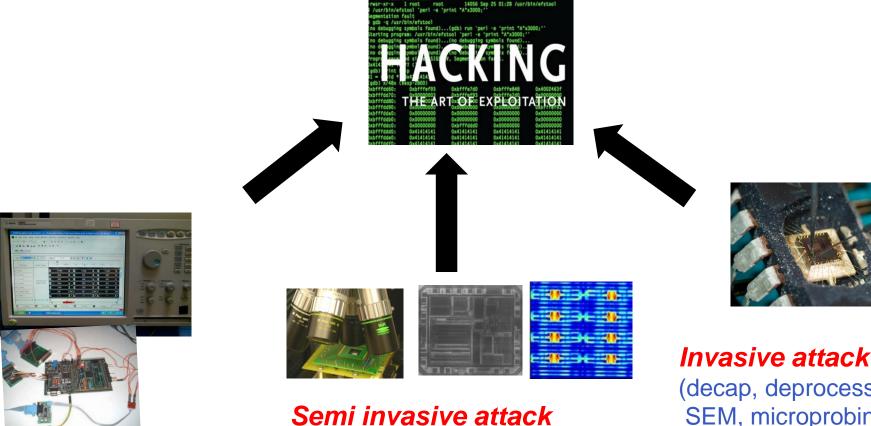
- 40ULP will achieve lower off-state leakage than 55LP
- VDD reduction is the only way to further reduce standby power

IOT-The connected era of everything


- Connection of things to internet
- Vulnerable to cyberattack

WHAT CAN WE EXPECT TO LOSE? IS IT WORTHWHILE TO HACK?

Security motivations for IoT eco-system CSR


- Many opportunities for attacks!
- Securing Communication Channels just part of the solution.
- Security is hard and needs hardware support

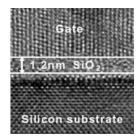
The section looks at hardware authentication and encryption

What The HACK?

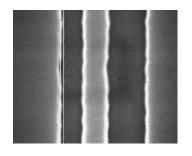
Non invasive attack (glitch, clock, power attack)

(NIR imaging, Laser imaging, fault injection)

Invasive attack (decap, deprocessing, SEM, microprobing, FIB)



Si Manufacturing Variations

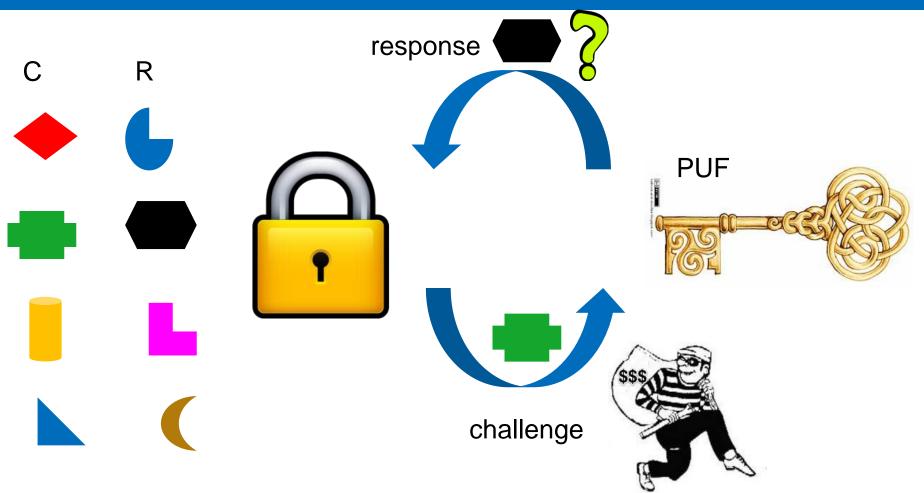


Random dopant fluctuation

Gate oxide thickness

Line edge roughness... Confidential © Cambridge Silicon Radio Limited 2015

- Nothing is deterministic anymore.
- Can we use this variation to create an unique DNA of every single chip?


Physically Unclonable Function (*PUF*):

"A function whose execution depends on inaccessible and irreproducible variations caused by Silicon's manufacturing process. This serves as the generation of keys – basis of the whole root of trust and security aspects."

Silicon PUF and the Hardware Root of Trust Goal

Features - Tamper and Side Channel Attack resistant, Hard to Reverse Engineer, Reliable, and low Cost.

Security is essential

2/3/4 JUNI 2015 JAARBEURS UTF

	 Write once public unique id per chip at manufacturer ID accessible by FW/Apps layers This ID will associate to a unique key set 	 Unique pair of private/public key per chip (Root Key Set) Embedded in every single chip by manufacturer 	Root Identity Module using RKS to securely sign/encrypt/decrypt ID and config data	Root of Trust: privileged FW execution to sign ROM/RAM fw and apps and use RIM to sign and safely store signatures	
ID io	dentifies chip's public k Confidential © Cambridge Silicon R	To sig		Root ID module used to store FW signatures	o sign and ECTRONICS *AUTOMATION

Comparison of NVM vs PUF

Technology	Advantages	Disadvantages
NVM	 Erasable Testable Reliable Low overheads 	 Easy to reverse engineer Require secure access path Need special process step-> cost
PUF	 Difficult to reverse engineer Inherently generated key No special process step 	Not erasableNot testable

<u>In Summary</u>

- Wearables are evolving and revolutionizing our engagement with ourselves and the world around us.
- We have identified the important factors
 Aesthetics
 Power Consumption
 Cost
 - Always On and Awareness
 - Security
- These all present challenges to consider as we move forward.

Push every boundary.®