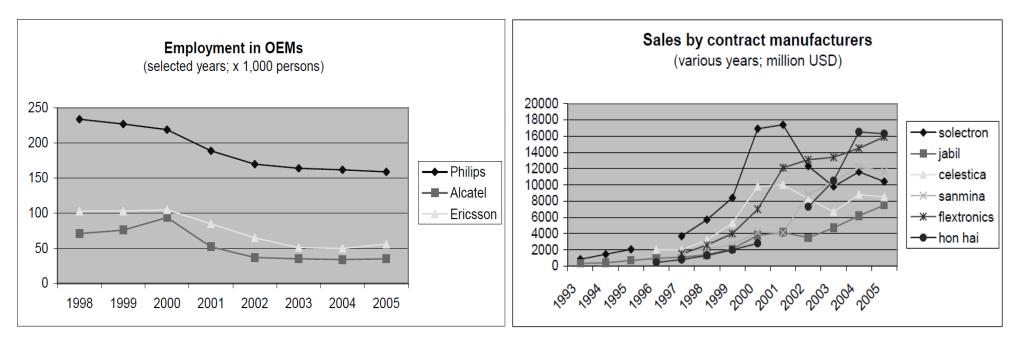
lnnec

COMPETITIVE ELECTRONICS ASSEMBLY NEARBY

GEERT WILLEMS – IMEC-ELECTRONIC ASSEMBLY

CENTER FOR ELECTRONICS DESIGN AND MANUFACTURING



- 20th Century Manufacturing Outsourcing
- Outlook 2016
- Re-shoring: bring manufacturing back
- What is needed?
- Quantification of Product Life Cycle Risks
- cEDM Tool Box

THE 20TH CENTURY MANUFACTURING OUTSOURCING THE TREND

- Focus on the core business
- Low cost electronics manufacturing by EMS:

 $US \rightarrow Mexico$ West $\rightarrow East Europe$ \rightarrow China

unec *LEDM*

THE 20TH CENTURY MANUFACTURING OUTSOURCING 20 YEARS OF ELECTRONICS OUTSOURCING

The result

- Electronics is everywhere
- China: The world's factory
- US-Europe: major decline in manufacturing activity and know-how ...
 ... that is needed for cost effective, qualitative product development
- Highly complex and fragmented supply chain
- Declining quality and reliability
- Counterfeit: >10% of electronic components
- Copyright \rightarrow "The right to copy"
- Slow response speed to customer driven changes.
- A lot of hidden costs: non-quality, communication, engineering changes, design iterations,...
- Transport: cost, environment

OUTLOOK 2016 - INDUSTRY "THE TIMES THEY ARE A-CHANGIN' "?

Foxconn Is Coming to America: Has Offshoring Peaked? Bolaji Ojo | January 28, 2014 | 1 Comment

Manufacturing Comes Back to United States Terry Costlow, IPC online editor September 2, 2013

HOW RESHORING DRIVES PROFITABILITY

This paper was originally published in the IPC APEX EXPO 2015 technical conference program.

Domestic Versus Offshore

PCB Manufacturing

The Trend Away From Offshore PCB Manufacturing

Is Nearshoring Right for Your Product?

JULY 2012

As China matures, a host of factors could rebalance the geographical supply chain.

Is Reshoring A Viable Option?

🕞 Tue, 01/21/2014 - 9:58am

by Tia Nowack, Associate Editor, Industrial Maintenance & Plant Operation

More: http://reshoringmfg.com/

A NEW PARADIGM FOR DESIGN THROUGH MANUFACTURE

Presented at IPC Apex 2012

Must manufacturing leave Europe?

Electronic Engineering Times Europe November 2013

"Raspberry Pi has shown that with the right product addressing a global market European manufacturing not only makes sense, but can show a lead to the world."

Why Printed Circuit Board Design Matters to the Executive:

How PCBs Are a Strategic Asset for Cost Reduction and Faster Time-to-Market

February 2010

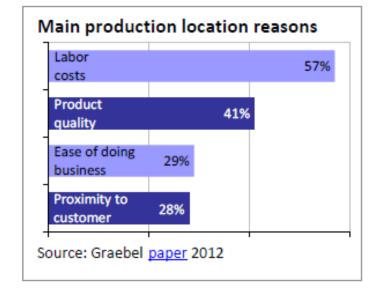
OUTLOOK 2016 - GOVERNEMENT "THE TIMES THEY ARE A-CHANGIN' "?

☑ info@reshorenow.org

Reshoring Initiativ

Bringing Manufacturing Back Home

Briefing 21/03/2014


Reshoring of EU manufacturing

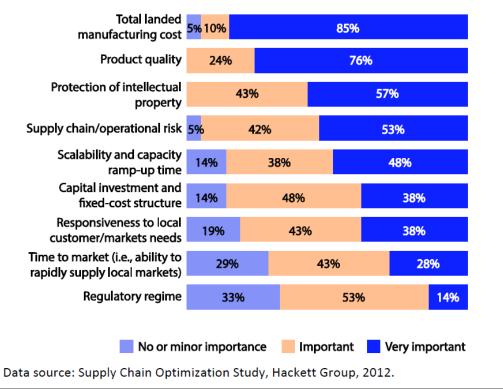
DRIVERS FOR RE-SHORING

Industry

- Rising total landed cost
 - Increasing labour cost
 China: +10%/y ('00-'05) +19%/y ('06-'10)
 - Increasing transport costs: oil x3 since '00
 - Cost of (larger) inventory
- Product quality
- Intellectual Property
- Ease of doing business
- Proximity to customers
- Mitigate supply risk

Governements

- Jobs: I manufacturing job + 2.5 support
- Higher pay than service sector
- More R&D \rightarrow innovation, IP
- More export, less import


Ref: EPRS-study – Reshoring of EU manufacturing – 21/03/2014

MOST LIKELY PRODUCTS TO BE RE-SHORED

- Expensive to transport: ex. Heavy machinery
- "Dynamic" goods subject to frequent changes in consumer demand and short product life-cycles
- Products where safety concerns are important

Manufacturing sourcing strategy decision driver

OUTLOOK 2016 - EU

EU DRIVERS: TOWARDS 20% GDP BY 2020

- Factories of the Future Industry 4.0 Horizon 2020 "Industrial Leadership" category 2014-2020: €17 billion
- Skills 4.0 (Human-centered Manufacturing)
 Need for highly skilled, efficient workforce
- Nearshoring in Eastern Europe
 R&D support, skilled workforce, infrastructure
- Carbon Neutral Manufacturing Energy consumption, renewable energy
- Additive Manufacturing
 3D printing-as-a-service model
- Nanotechnology

Manufacturing in EU: 15% GDP 33 million employees

MANUFACTURING LEADERSHIP FROST & SULLIVAN

The Future of Manufacturing in Europe

Posted By Muthukumar Viswanathan, April 05, 2016 at 12:29 PM, in Category: Factories of the Future

www.cedm.be

WHAT IS NEEDED?

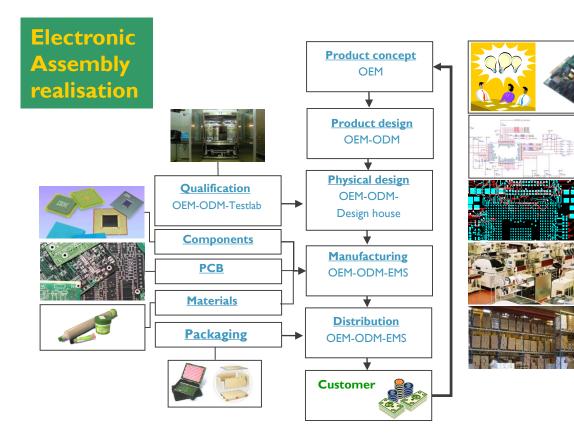
Product:

- Dynamical
- Quality
- Safety \rightarrow reliable
- High value

Trustworthy PREDICTION of all Product Life Cycle aspects (without costly, long duration prototyping & testing)

Design-for-eXcellence Manufacturing, Reliability, Logistics, Cost,...

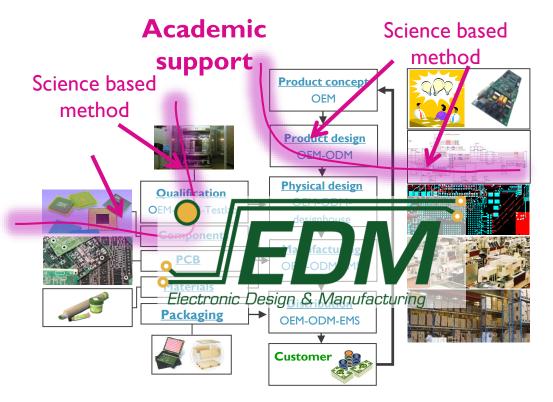
Challenge:


In the US – and in parts of Europe – there is difficulty in finding suitably skilled labour, reflecting the education system and a loss of specific manufacturing know-how, which has passed to new countries.

WHAT IS NEEDED? PRODUCT LIFE CYCLE & SUPPLY CHAIN

EDM

ເມງອດ


Status

- Many players.
- International.
- Very complex.
- Fragmented responsibility.
- Little academic support and education (esp. at master level)

Consequence

- Poor electronic product specification.
- Poor control of product and supply chain quality and performance.
- Development of design guidelines has stopped.

WHAT IS NEEDED? SCIENTIFIC/ACADEMIC SUPPORT

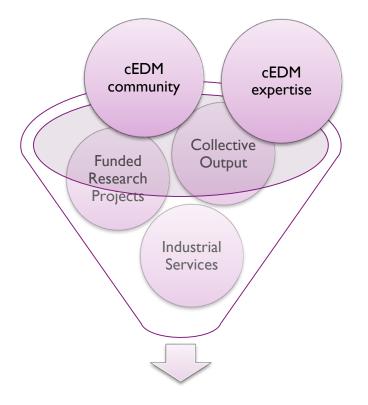
Experience-based industrial approach

Insufficient scientific basis and possibilities for education :

- PCB/PBA technology
- Substrate manufacturing
- Electronics assembly
- Test coverage
- Failure-mechanisms
- Design-for-X
- Reliability tests
- etc.

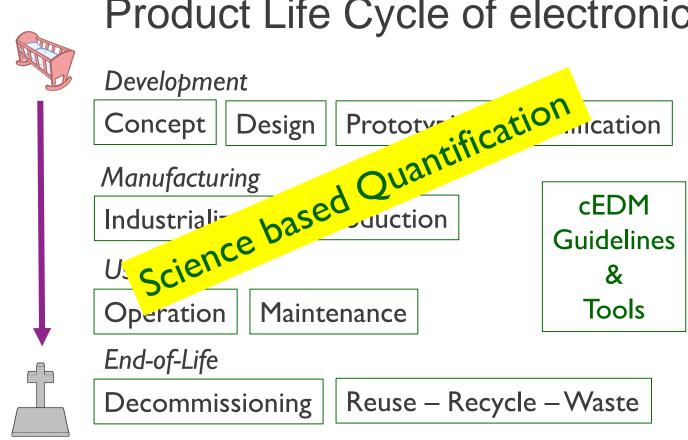
to handle challenges of complexity, quality and reliability

WHAT IS NEEDED


- From experience to science based product development and manufacturing
- IC realisation as a source of inspiration: Each realisation element of an IC has a EA 'sibling'.

IC realisation	EA realisation
 Materials semiconductors, metals, insulators, interfaces 	 Materials polymers, metals, solder, interfaces
 Process-steps oxidation, implantation, deposition, lithography, 	 Process-steps lamination, drilling, plating, lithography, printing, assembly, soldering,
• Production-flow IC process flow	• Production-flow substrate b , assembly flow
Test and analysis	• Test and are is
• Design – layout - TAD	• Design – lay
• Reliability	• Reliability

CEDM MISSION


To support industry

in the development and manufacturing of high quality, reliable and cost-effective electronic modules (PBA) by means of **knowledge** creation and sharing, **scientifically sound methodologies**, **collaboration** throughout the electronic supply chain.

Better electronics at reduced cost through science based design & production methodologies

CEDM GUIDELINES: NEW STRUCTURE

DESIGN/DfX	Qualification	Manufacturing	Operation	End-of-Life
EDM-D	EDM-Q	EDM-M	EDM-O	EDM-E

Product Life Cycle Management incl. New Product Introduction (NPI)

DfX Guideline	Title	Update/content
EDM-D-000	Good Design-for-X Practice (V1.0)	
EDM-D-001	PCB Specification (V2.5)	
EDM-D-002	Component Specification (V1.0)	
EDM-D-003	PBA Assembly Material Specification (V1.2)	V2: include reliability related lead-free solder selection
EDM-D-004	Design-for-Assembly (V1.0)	
EDM-D-005	Rigid PCB Build-Up and Density Classification (V1.3)	
EDM-D-006	Layout Solutions (V1.0)	
EDM-D-007	Quality and Test coverage quantification. Design-for-Test (V1.1)	
EDM-D-008	Technology and Manufacturing Capability Mapping of PBA designs (V1.1)	
EDM-D-009	Signal Integrity (V1.0)	
EDM-D-010	Power Integrity (V1.0)	
EDM-D-011	Electro-Magnetic Compatibility	V1.0: EDM-I-003> EDM-D-011
EDM-D-012	Mechanical integration	V1.0: EDM-I-001> EDM-D-012 V2.0 or V1.1: update of content
EDM-D-013	Thermal Design of Electronics	New. Instead of EDM-I-002

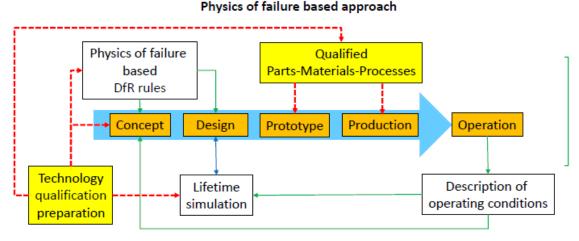
EDM-P

New guidelines:

- EDM-D-013: Thermal Design of Electronics
- EDM-M-007: Printed Board Assembly Defect Modeling. Extracting DPMO Values from Production Data.
- Available at www.cedm.be

Development: critical aspects

- Engineering cost
- Time-to-market

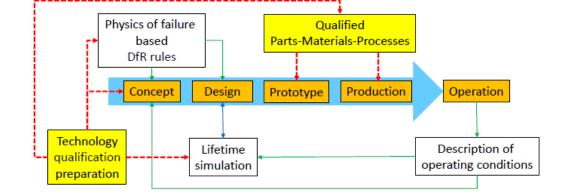

Minimize:

- Redesign
- Prototyping iterations: right first time
- Qualification failures

Maximize: PREDICTABILITY

Design-for-X guidelines & tools:

Manufacturing, test, reliability/robustness, logistics



Manufacturing: critical aspects

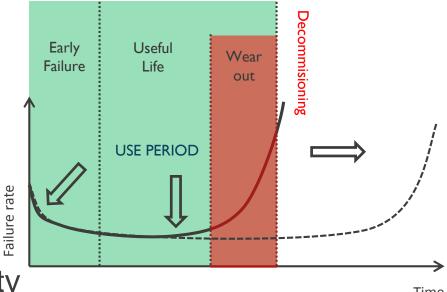
- Cost
- Volume ramp-up
- Delivery performance

Maximize yield

Minimize labour

Minimize Work-in-Progress (test & repair) Design-for-Manufacturing, Test, Cost, Logistics,...

Use: critical aspects


- Quality
- Reliability
- Performance
- Availability

ເມາງອດ

FDM

Low maintenance cost

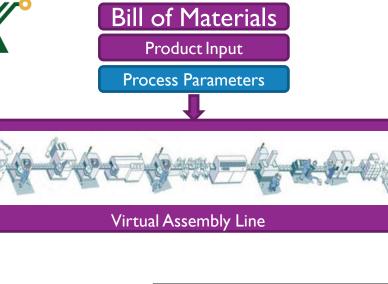
Design-for-Quality and Reliability Quality and Reliability quantification

Time

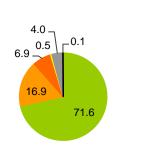
End-of-Life: critical aspects

- Replacement
- RoHS/WEEE
- Toxicity
- Waste treatment cost
- Recycling revenue

Design-for-RoHS/WEEE, disassembly, recycling BOM based material identification



UNDEC


CEDM TOOL BOX

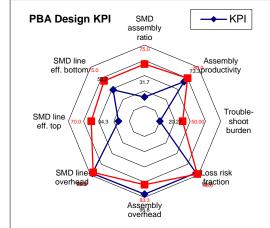
- Design-for-Assembly: BOM based
- Quantified Quality
 - DPMO/yield
 - Test coverage
 - Assembly flow & time
- Assembly model and DfA evaluator
 - Design impact on assembly flow and efficiency

PBA flow distribution

First Pass Yield

2 pass Manu. T./ 1 pass Func. T.

1 pass Manu. T./ 2

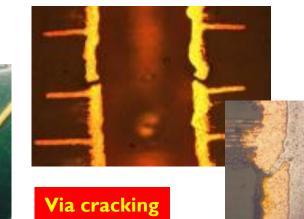

2 pass Manu. T./ 2

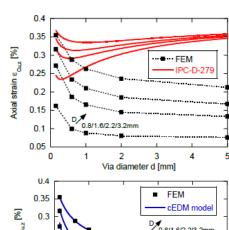
pass Func. T.

pass Func. T.

Unpredictable

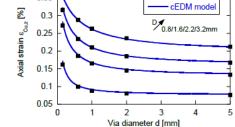
outcome Scrap


່ເກາec *ຼີ EDM*


Delamination

CEDM TOOL BOX

PCB laminate specification: specify FR4 type


- (Cohesive) delamination
- Via failure: new analytical model
- Prediction of failure probability: production & operation
- >200 laminates: PCB Laminate Overview on www.cedm.

OfR Solutions

Experience the Power of Insight!

sherloel

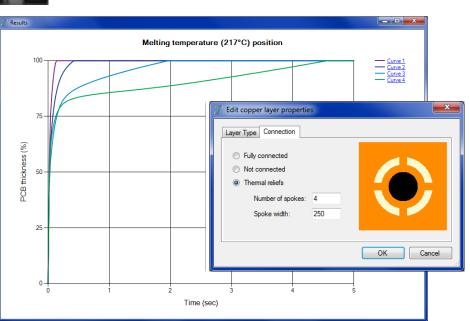
Dielectric (µm):

Layer 8 (µm): Solder Mask Bottom (µm): 20

EDM

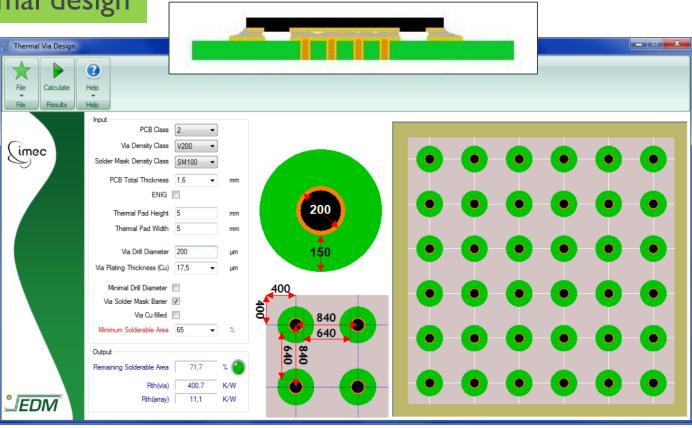
เท₁ec *LEDM*

183


2 35

_ D X

NEW: % through hole fill


EDM

ເກາຍດ

PCB layout: DfA & thermal design

NEW:

Thermal via for bottom terminated SMD

www.cedm.be

mec

- BOM DfM Checklist
- Failure Risk Assessment (Members / Partners only)

"How **FMEA** can improve the reliability of your product"

Presented by: **Riet Labie**, imec 10h00 - Thursday 12 January, 2017

<u>p / partnership</u>

ailure_Risk_Assessment_FMEA_V2.3_companyX-product _ D X Review View Developer 🛇 🕜 🗖 🗗 🔀 e Layout Formulas Data Failure Rick Assessment 5-7-6-2814 Product ager PDA: Y Where is address? Brage Balans Anafaalaa/Tadalaa Productor Failure mechanisms Criss crarals P Brage Iral *************** Ears faar Beleslably Productor Iral regardarala labo In he preformed ----------speafed A sector care adalas, asl of a PCP had-up as eage man h PCB failure ind, handle, mesh ante darag apre alana an PCP d. PCP paul and in nechanisas an affection for orelas f. angentum, Laded Iral -----General anality issu

www.cedm.be

More

More

More

More

2015

<u>More</u>

New guideline

Signal Integrity

New calculator

Thermal Via Design Calculator

October 7-14-21-28

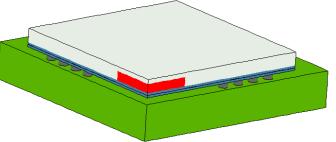
KULeuven Course EMC

September 18, 2015 cEDM WORKSHOP # 23

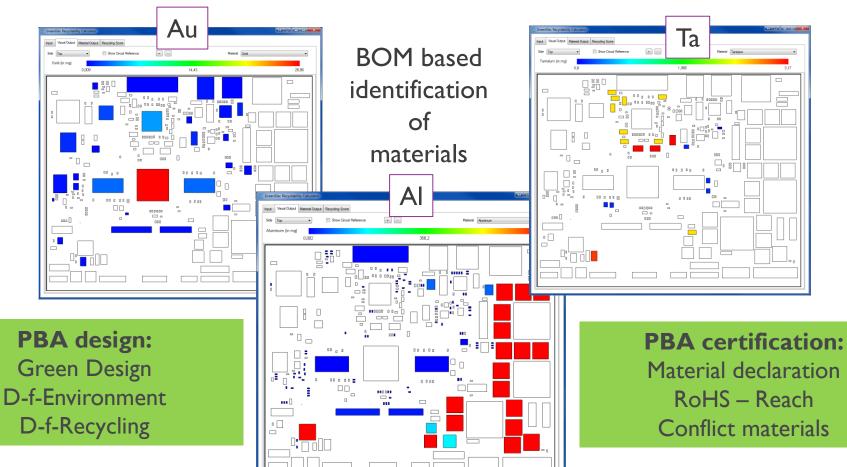
- Reliability extension to *Pred-X*
- Analytical solder joint lifetime model

Under development

PBA design: D-f-Reliability


 2 & 3D models for assemblies with flexible component on flexible substrates calculating forces and moments on solder joints

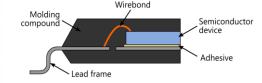
[Eq. A-3]

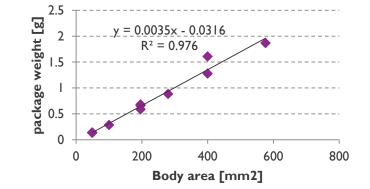

• PCB and package flexibility taken into account To replace IPC-D-279's:

> The cyclic fatigue damage term for leadless SM solder attachments, for which the stresses in the solder joints exceed the solder yield strength and cause plastic yielding of the solder, is

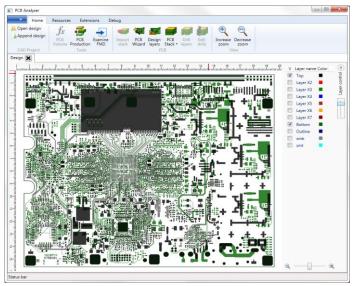
$$\Delta D(\text{leadless}) = \left[\frac{FL_D \Delta(\alpha \Delta T)}{h}\right]$$

unec *LEDM*



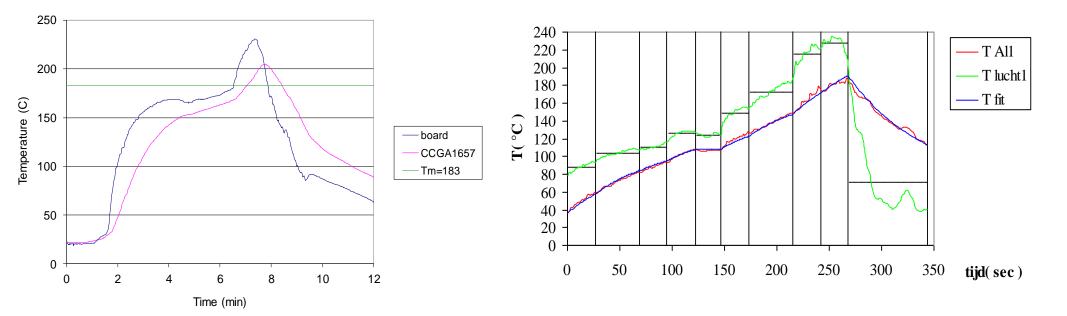

Full Material Declaration Material Composition Models

Solder: pad & stencil data



Estimate material content based on the physical characteristics and build-up

PCB


	8 LAYER	STACKUP
	Basic	material
	PLATING	17 um
Cu_top	COPPER	18 um
	PREPREG	2x63 um
Cu_lay2	COPPER	35 um
	INNER	300 um
Cu_lay3	—— COPPER	35 um
	PREPREG	
Cu_lay4	COPPER	35 um
	INNER	300 um
Cu_lay5	—— COPPER	35 um
	PREPREG	
Cu_lay6	COPPER	35 um
	INNER	300 um
Cu_lay7	COPPER	35 um
	PREPREG	
Cu_bot	COPPER	18 um
	PLATING	17 um
	TOTAL	1684 um

Assembly: reflow soldering

Under development:

BOM based prediction reflow soldering temperature differences across the PBA

FUNDED PROJECTS

collectivect

IWT O&O Rev-Up

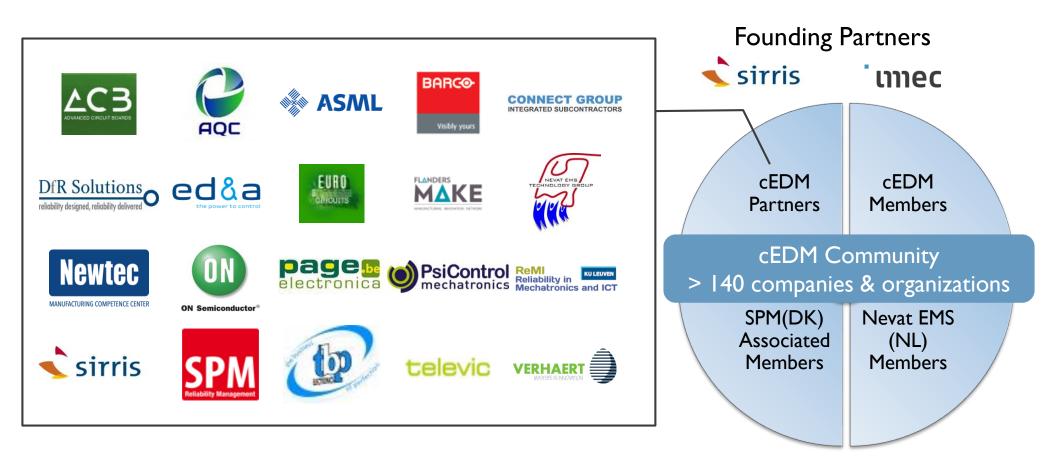
- Reliability testing
- Physics-of-Failure based
- Interconnection
- Surface Insulation Resistance
- "health monitoring"

ICON Compact

- Physics-of-Failure based reliability modeling
- Interconnection
- Selected components
- Time-dependent failure in product development.
- VIS-traject InProVoL
 - DfR Guidelines
 - DfR Tools
 - Industrial implementation

Start: 1/10/2015

Consultancy


You can join the consortium and get early access to the results!

THE CEDM COMMUNITY

unec *ledm*

2016: +15

EARK YOU UNDEC embracing a better life

ເmec